View source: R/4.f.calibration.R
| calib_mdl | R Documentation | 
This function will read an object of class ENMevaluation (See ?ENMeval::ENMevaluate for details) and calibrate the selected maxent models.
calib_mdl(
  ENMeval.o,
  sp.nm = "species",
  a.calib,
  occ = NULL,
  use.ENMeval.bgpts = TRUE,
  nbg = 10000,
  format = "raster",
  pred.args = c("outputformat=cloglog", "doclamp=true", "pictures=true"),
  mSel = c("AvgAIC", "LowAIC", "OR", "AUC"),
  wAICsum = 0.99,
  dAICc = 2,
  AUCmin = 0.7,
  randomseed = FALSE,
  responsecurves = TRUE,
  arg1 = "noaddsamplestobackground",
  arg2 = "noautofeature",
  numCores = 1,
  parallelTunning = TRUE
)
| ENMeval.o | Object of class ENMevaluation | 
| sp.nm | Species name. Used to name the output folder | 
| a.calib | Predictors (cropped environmental variables) for model tuning. Used in model calibration. Argument 'x' of dismo::maxent. Raster* object or SpatialGridDataFrame, containing grids with predictor variables. These will be used to extract values from for the point locations. Can also be a data.frame, in which case each column should be a predictor variable and each row a presence or background record. | 
| occ | Occurrence data. Argument 'p' of dismo::maxent. This can be a data.frame, matrix, SpatialPoints* object, or a vector. If p is a data.frame or matrix it represents a set of point locations; and it must have two columns with the first being the x-coordinate (longitude) and the second the y-coordinate (latitude). Coordinates can also be specified with a SpatialPoints* object If x is a data.frame, p should be a vector with a length equal to nrow(x) and contain 0 (background) and 1 (presence) values, to indicate which records (rows) in data.frame x are presence records, and which are background records | 
| use.ENMeval.bgpts | Logical. Use background points from ENMeval or sample new ones? | 
| nbg | Number of background points to use. These are sampled randomly from the cells that are not  | 
| format | Character. Output file type. Argument 'format' of raster::writeRaster | 
| pred.args | Charater. Argument 'args' of dismo::maxent. Additional argument that can be passed to MaxEnt. See the MaxEnt help for more information. The R maxent function only uses the arguments relevant to model fitting. There is no point in using args='outputformat=raw' when *fitting* the model; but you can use arguments relevant for *prediction* when using the predict function. Some other arguments do not apply at all to the R implementation. An example is 'outputfiletype', because the 'predict' function has its own 'filename' argument for that. | 
| mSel | Character vector. Which criteria to use when selecting model(s). Currently implemented: "AvgAIC", "LowAIC", "OR", "AUC" | 
| wAICsum | Cumulative sum of top ranked models for which arguments will be created | 
| dAICc | Maximum delta AICc of models to be selected. | 
| AUCmin | Minimum AUC value to select models using EBPM criteria. | 
| randomseed | logical. Args to be passed to dismo::maxent. See ?dismo::maxent and the MaxEnt help for more information. | 
| responsecurves | logical. Args to be passed to dismo::maxent. See ?dismo::maxent and the MaxEnt help for more information. | 
| arg1 | charater. Args to be passed to dismo::maxent. See ?dismo::maxent and the MaxEnt help for more information. | 
| arg2 | charater. Args to be passed to dismo::maxent. See ?dismo::maxent and the MaxEnt help for more information. | 
| numCores | Number of cores to use for parallelization. If set to 1, no paralellization is performed | 
| parallelTunning | Should parallelize within species (parallelTunning=TRUE) or between species (parallelTunning=FALSE) | 
A 'mcm' (calib.mdls, Maxent Calibrated Models). A list containing the models ('selected.mdls') used for model calibration, calibrated maxent models ('mxnt.mdls'), and arguments used for calibration ('pred.args').
mod_sel, calib_mdl_b, ENMevaluate_b, ENMevaluate,
maxent, proj_mdl, proj_mdl_b
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.