View source: R/4.f.calibration.R
| calib_mdl_b | R Documentation | 
This function will read a list of objects of class ENMevaluation (See ?ENMeval::ENMevaluate for details) and return selected maxent model calibrations and predictions. Each element on the list is usually a species. a.proj.l, a.calib.l, occ.l are lists with occurence data, projection and calibration/predictor data. Species in these lists must all be in the same order of species in ENMeval.o.
calib_mdl_b(
  ENMeval.o.l,
  a.calib.l,
  occ.l = NULL,
  use.ENMeval.bgpts = TRUE,
  format = "raster",
  pred.args = c("outputformat=cloglog", "doclamp=true", "pictures=true"),
  mSel = c("AvgAIC", "LowAIC", "OR", "AUC"),
  wAICsum = 0.99,
  dAICc = 2,
  AUCmin = 0.7,
  randomseed = FALSE,
  responsecurves = TRUE,
  arg1 = "noaddsamplestobackground",
  arg2 = "noautofeature",
  numCores = 1,
  parallelTunning = TRUE
)
| ENMeval.o.l | List of objects of class ENMevaluation | 
| a.calib.l | List of predictors (cropped environmental variables) for model tuning. Used in model calibration. Argument 'x' of dismo::maxent. Raster* object or SpatialGridDataFrame, containing grids with predictor variables. These will be used to extract values from for the point locations. Can also be a data.frame, in which case each column should be a predictor variable and each row a presence or background record.. | 
| occ.l | List of occurence data. See argument "occ" in calib_mdl. | 
| use.ENMeval.bgpts | Logical. Use background points from ENMeval or sample new ones? | 
| format | Character. Output file type. Argument 'format' of raster::writeRaster | 
| pred.args | Charater. Argument 'args' of dismo::maxent. Additional argument that can be passed to MaxEnt. See the MaxEnt help for more information. The R maxent function only uses the arguments relevant to model fitting. There is no point in using args='outputformat=raw' when *fitting* the model; but you can use arguments relevant for *prediction* when using the predict function. Some other arguments do not apply at all to the R implementation. An example is 'outputfiletype', because the 'predict' function has its own 'filename' argument for that. | 
| mSel | Character vector. Which criteria to use when selecting model(s). Currently implemented: "AvgAIC", "LowAIC", "OR", "AUC" | 
| wAICsum | Cumulative sum of top ranked models for which arguments will be created | 
| dAICc | Maximum delta AICc of models to be selected. | 
| AUCmin | Minimum AUC value to select models using EBPM criteria. | 
| randomseed | logical. Args to be passed to dismo::maxent. See ?dismo::maxent and the MaxEnt help for more information. | 
| responsecurves | logical. Args to be passed to dismo::maxent. See ?dismo::maxent and the MaxEnt help for more information. | 
| arg1 | charater. Args to be passed to dismo::maxent. See ?dismo::maxent and the MaxEnt help for more information. | 
| arg2 | charater. Args to be passed to dismo::maxent. See ?dismo::maxent and the MaxEnt help for more information. | 
| numCores | Number of cores to use for parallelization. If set to 1, no paralellization is performed | 
| parallelTunning | Should parallelize within species (parallelTunning=TRUE) or between species (parallelTunning=FALSE) | 
A 'mcm.l' object. A list of 'mcm' (calib.mdls, Maxent Calibrated Models), returned from function "calib_mdl"
mod_sel, calib_mdl, ENMevaluate_b, ENMevaluate,
maxent, proj_mdl, proj_mdl_b
## Not run: 
mxnt.mdls.preds.lst <- calib_mdl_b(ENMeval.o.l=ENMeval.res.lst,
a.calib.l=occ.b.env, a.proj.l=areas.projection, occ.l=occ, wAICsum=0.99)
mxnt.mdls.preds.lst[[1]][[1]] # models [ENMevaluate]d and selected using sum of wAIC
mxnt.mdls.preds.lst[[1]][[2]] # MaxEnt models
mxnt.mdls.preds.lst[[1]][[3]] # used prediction arguments
plot(mxnt.mdls.preds.lst[[1]][[4]]) # MaxEnt predictions, based on the model selection criteria
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.