Description Usage Arguments Details Value Author(s) Examples
View source: R/SpaTemHTP_pipeline.R
Pipeline function performing different level of data treatment on high throughput phenotyping (HTP) time series data.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | SpaTemHTP_pipeline(
exp_id = "exp_x",
trait_id = "trait_i",
out_loc = NULL,
exp_des_data,
pheno_data,
raw_data = TRUE,
raw_data_out_det = FALSE,
raw_data_imput = FALSE,
raw_data_out_det_imput = TRUE,
G_BLUES_TS = TRUE,
G_BLUES_TS_sel = TRUE,
G_BLUES_TS_log_curve = TRUE,
out_det = TRUE,
miss_imp = TRUE,
sp_adj = TRUE,
single_mixed_model = FALSE,
out_p_val = 0.05,
fixed = NULL,
random = ~row_f + col_f
)
|
exp_id |
|
trait_id |
|
out_loc |
|
exp_des_data |
|
pheno_data |
|
raw_data |
|
raw_data_out_det |
|
raw_data_imput |
|
raw_data_out_det_imput |
|
G_BLUES_TS |
|
G_BLUES_TS_sel |
|
G_BLUES_TS_log_curve |
|
out_det |
|
miss_imp |
|
sp_adj |
|
single_mixed_model |
|
out_p_val |
|
fixed |
Optional right hand formula object specifying the fixed effects of the SpATS model. Default = NULL. |
random |
Optional right hand formula object specifying the random effects of the SpATS model. Default = ~ row_f + col_f. |
The function perform different operations to progressively enrich the data in information content. The user can select the amount of treatment he wants to apply on the data by selecting among the following options:
Raw data with experimetal design information.
Raw data with outliers detected (using outliers_det_boxplot
)
and experimental design information.
Raw data with missing values imputed after outliers detection
(using miss_imp_PMM
) and experimental design information.
Genotype adjusted means (BLUEs) time series using the SpATS model for spatial correction after outliers detection and imputation.
Selection of an optimal section or time point in the whole genotype
BLUEs time series according to an heritability criteria or change point
analysis (TS_select
).
Further analysis of the time series fitting a logistic curve to the genotype BLUEs TS.
The two last options (selection on the time series and further modelling of the time series) are conditional on the calculation of the genotype adjusted means time series (option 4).
For each chosen options, the function will save the produced data in a folder created at the specified location. Will also be added.
... (develop further)
ICRISAT GEMS team
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | data(SG_PH_data)
SG_PH_data$col_f <- factor(SG_PH_data$col)
SG_PH_data$row_f <- factor(SG_PH_data$row)
SG_PH_data$rep <- factor(SG_PH_data$rep)
SG_PH_data$block <- factor(SG_PH_data$block)
exp_des_data = SG_PH_data[, c("row", "col", "row_f", "col_f","genotype",
"rep", "block")]
pheno_data <- SG_PH_data[, 6:28]
## Not run:
out_loc <- getwd() # specify a directory where the results will be saved
results <- SpaTemHTP_pipeline(exp_id = 'Exp_XX', trait_id = 'trait_1',
out_loc = out_loc, exp_des_data = exp_des_data, pheno_data = pheno_data,
random = ~ rep + rep:block + row_f + col_f)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.