Description Usage Arguments Details Value Author(s) References Examples
Perform Change Point Analysis (CPA) on genotype adjusted means or G-BLUEs time series of a trait
1 | cpa_getOTW_2(data, h2)
|
data |
|
h2 |
|
Entire temporal data set is partitioned into windows based on the differences in the distribution of trait heritability and phenotypic separability using a change point analysis procedure defined by Matteson et al. (2014).
List with the following items:
change_points |
|
change_points_dates |
|
OTW_data |
|
OTW_data_opt |
|
Soumyashree Kar, Vincent Garin
Matteson, D.S. and James, N.A. (2014). A nonparametric approach for multiple change point analysis of multivariate data. Journal of the American Statistical Association, 109(505), pp.334-345.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | data(SG_PH_data)
SG_PH_data$col_f <- factor(SG_PH_data$col)
SG_PH_data$row_f <- factor(SG_PH_data$row)
SG_PH_data$rep <- factor(SG_PH_data$rep)
SG_PH_data$block <- factor(SG_PH_data$block)
exp_des_data = SG_PH_data[, c("row", "col", "row_f", "col_f","genotype",
"rep", "block")]
## Not run:
op <- SpaTemHTP_proc(exp_des_data, pheno_data = SG_PH_data[, 6:28],
out_det = TRUE, miss_imp = TRUE, sp_adj = TRUE,
random = ~ rep + rep:block + row_f + col_f,
h2_comp = TRUE, plot = TRUE)
data <- op$G_BLUES
# make sure data colnmanes are dd-mm-yyyy Date format compatible
dates <- substr(colnames(data), 2, nchar(colnames(data)))
dates <- str_replace_all(string = dates, pattern = '\\.', replacement = '-')
colnames(data) <- dates
h2 <- op$h2
OTW <- cpa_getOTW_2(data = data, h2 = h2)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.