Description Usage Arguments Details Value Author(s) References Examples
View source: R/SpaTemHTP_proc.R
Calculate sequentially the genotype adjusted means (genotype best unbiased linear estimates, G-BLUEs).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | SpaTemHTP_proc(
exp_des_data,
pheno_data,
out_det = TRUE,
miss_imp = TRUE,
sp_adj = TRUE,
single_mixed_model = FALSE,
out_p_val = 0.05,
print_day = TRUE,
fixed = NULL,
random = ~row_f + col_f,
spatial,
h2_comp = TRUE,
h2_comp_alt = TRUE,
plot = TRUE,
plot_out = TRUE,
plot_miss = TRUE,
plot_SpATS = TRUE,
res_folder = NULL
)
|
exp_des_data |
|
pheno_data |
|
out_det |
|
miss_imp |
|
sp_adj |
|
single_mixed_model |
|
out_p_val |
|
print_day |
|
fixed |
Optional right hand formula object specifying the fixed effects of the SpATS model. Default = NULL. |
random |
Optional right hand formula object specifying the random effects of the SpATS model. Default = ~ row_f + col_f. |
spatial |
|
h2_comp |
|
h2_comp_alt |
|
plot |
|
plot_out |
|
plot_miss |
|
plot_SpATS |
|
res_folder |
|
The function iterates over the different time points (e.g days) of the experiment and calculate the G-BLUEs according to the following model: pheno = Int + row(random) + col(random) + genotype(fixed) + f(row, col) + e, where f(row, col) represent the spatial surface modeled using a 2-D P-spline approach as proposed by Rodgriguez-Alvarez et al. (2018).
The user can run a different model using the fixed and random arguments that specifies the fixed and random part of the mixed model used to calculate the genotypes BLUEs. The spatially adjusted model are fitted using function from the SpATS package (Rodgriguez-Alvarez et al., 2018).
The methode used to calculate the spatial surface can be specified in argument 'spatial'. The user can choose between 'SAP' and 'PSANOVA'. The user can also try the alternative method if one is failing by selecting 'SAP_if_PSANOVA_fail' or 'PSANOVA_if_SAP_fail'.
If single_mixed_model = TRUE
, the function calculates a single-step mixed
model where outliers are iteratively removed based on the model residuals
and the missing values imputed during the estimation procedure. The outliers
are detected using a Grubb Test (p<0.05, default).
If h2_comp = TRUE
, the function calculate the heritability from the
computed SpATS model. If h2_comp_alt = TRUE
, if the heritability
computation fail with the SpATS model, the function calculates the
heritability using a classicle linear mixed model (pheno = rep (F) +
row (R) + col (R) + genotype (R) + e). The formula used in the following
h2 = Sgeno / (Sgeno + (Se/n_rep)).
Return:
If sp_adj = FALSE, the code to calculate the genotype BLUEs using a mixed model without spatial adjustment is not available, so we return the matrix of data after eventual processing operation (outlier detection, missing value imputation). Those data can be used with another software (e.g. Genstat) to calculate the genotype BLUEs without spatial adjustment.
If sp_adj = TRUE, list containing the following objects
G_BLUES |
|
G_BLUES_stdev |
|
h2 |
|
Soumyashree Kar, Vincent Garin
Maria Xose Rodriguez-Alvarez, Martin P. Boer, Fred A. van Eeuwijk, Paul H.C. Eilers (2018). Correcting for spatial heterogeneity in plant breeding experiments with P-splines. Spatial Statistics 23 52 - 71 URL https://doi.org/10.1016/j.spasta.2017.10.003
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | data(SG_PH_data)
SG_PH_data$col_f <- factor(SG_PH_data$col)
SG_PH_data$row_f <- factor(SG_PH_data$row)
SG_PH_data$rep <- factor(SG_PH_data$rep)
SG_PH_data$block <- factor(SG_PH_data$block)
exp_des_data = SG_PH_data[, c("row", "col", "row_f", "col_f","genotype",
"rep", "block")]
## Not run:
G_BLUEs <- SpaTemHTP_proc(exp_des_data, pheno_data = SG_PH_data[, 6:28],
out_det = TRUE, miss_imp = TRUE, sp_adj = TRUE,
random = ~ rep + rep:block + row_f + col_f,
spatial = 'PSANOVA',
plot = TRUE, plot_out = FALSE, plot_miss = FALSE,
plot_SpATS = FALSE)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.