scalingFun: Scaling function

Description Usage Arguments Value References See Also Examples

Description

Parametric transformation of the input space variables. The transformation is obtained coordinatewise by integrating piecewise affine marginal "densities" parametrized by a vector of knots and a matrix of density values at the knots. See references for more detail.

Usage

1

Arguments

X

an n*d matrix standing for a design of n experiments in d-dimensional space

knots

a list of knots parametrizing the transformation.

eta

a list of coefficients parametrizing the d marginal transformations. Each element stands for a set of marginal density values at the knots defined above.

plot

if TRUE plots the image of the columns of X according to the corresponding marginal transformations.

Value

The image of X by a scaling transformation of parameters knots and eta

References

Y. Xiong, W. Chen, D. Apley, and X. Ding (2007), Int. J. Numer. Meth. Engng, A non-stationary covariance-based Kriging method for metamodelling in engineering design.

See Also

scalingGrad

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
## 1D Transform of Xiong et al.
knots <- c(0, 0.3, 0.8, 1); eta <- c(2, 0.4, 1.4, 1.1)
nk <- length(knots)
t <- seq(from = 0, to = 1, length = 200)
f <- scalingFun(X = matrix(t), knots = list(knots), eta = list(eta))

## for text positions only
itext <- round(length(t) * 0.7)
xtext <- t[itext]; ftext <- f[itext] / 2; etamax <- max(eta)

## plot the transform function
opar <- par(mfrow = c(2, 1))
par(mar = c(0, 4, 5, 4))
plot(x = t, y = f, type = "l", lwd = 2, col = "orangered",
     main = "scaling transform f(x) and density g(x)",
     xlab = "", ylab = "", xaxt = "n", yaxt = "n") 
axis(side = 4)
abline(v = knots, lty = "dotted"); abline(h = 0)
text(x = xtext, y = ftext, cex = 1.4,
     labels = expression(f(x) == integral(g(t)*dt, 0, x)))

## plot the density function, which is piecewise linear
scalingDens1d <- approxfun(x = knots, y = eta)
g <- scalingDens1d(t)
gtext <- 0.5 * g[itext] + 0.6 * etamax
par(mar = c(5, 4, 0, 4))
plot(t, g, type = "l", lwd = 2, ylim = c(0, etamax * 1.2),
     col = "SpringGreen4", xlab = expression(x), ylab ="")
abline(v = knots, lty = "dotted")
lines(x = knots, y = eta, lty = 1, lwd = 2, type = "h", col = "SpringGreen4")
abline(h = 0)
text(x = 0.7, y = gtext, cex = 1.4, labels = expression(g(x)))

## show knots with math symbols eta, zeta
for (i in 1:nk) {
  text(x = knots[i], y = eta[i] + 0.12 * etamax, cex = 1.4,
       labels = substitute(eta[i], list(i = i)))
  mtext(side = 1, cex = 1.4, at = knots[i], line = 2.4,
        text = substitute(zeta[i], list(i = i)))
}
polygon(x = c(knots, knots[nk], knots[1]),  y = c(eta, 0, 0),
        density = 15, angle = 45, col = "SpringGreen", border = NA)
par(opar)

IRSN/DiceKriging documentation built on May 8, 2019, 1:25 p.m.