Description Usage Arguments Value Examples
How many permutations do I need to test at my desired significance level?
1 | requiredPerms(alpha, alternative = "greater")
|
alpha |
desired significance threshold. |
alternative |
a character string specifying the alternative hypothesis, must be one of "greater" (default), "less", or "two.sided". You can specify just the initial letter. |
The minimum number of permutations required to detect any significant
associations at the provided alpha
. The minimum p-value will always
be smaller than alpha
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | data("NetRep")
# Set up input lists for each input matrix type across datasets. The list
# elements can have any names, so long as they are consistent between the
# inputs.
network_list <- list(discovery=discovery_network, test=test_network)
data_list <- list(discovery=discovery_data, test=test_data)
correlation_list <- list(discovery=discovery_correlation, test=test_correlation)
labels_list <- list(discovery=module_labels)
# How many permutations are required to Bonferroni adjust for the 4 modules
# in the example data?
nPerm <- requiredPerms(0.05/4)
# Note that we recommend running at least 10,000 permutations to make sure
# that the null distributions are representative.
preservation <- modulePreservation(
network=network_list, data=data_list, correlation=correlation_list,
moduleAssignments=labels_list, nPerm=nPerm, discovery="discovery",
test="test"
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.