ensemble_exp: Estimating Ensemble Kernel Matrices Using EXP

Description Usage Arguments Details Value Author(s) References See Also

Description

Give a list of estimated kernel matrices and their weights using exponential weighting.

Usage

1
ensemble_exp(n, kern_size, beta, error_mat, A_hat)

Arguments

n

(integer) A numeric number specifying the number of observations.

kern_size

(integer, =K) A numeric number specifying the number of kernels in the kernel library.

beta

(numeric/character) A numeric value specifying the parameter when strategy = "exp". See Details.

error_mat

(matrix, n*K) A n\*kern_size matrix indicating errors.

A_hat

(list of length K) A list of projection matrices for every kernels in the kernel library.

Details

Exponential Weighting

Additionally, another scholar gives a new strategy to calculate weights based on the estimated errors \{\hat{ε}_d\}_{d=1}^D.

u_d(β)=\frac{exp(-\parallel \hat{ε}_d \parallel_2^2/β)}{∑_{d=1}^Dexp(-\parallel \hat{ε}_d \parallel_2^2/β)}

beta

The value of beta can be "min"=min\{RSS\}_{d=1}^D/10, "med"=median\{RSS\}_{d=1}^D, "max"=max\{RSS\}_{d=1}^D*2 and any other positive numeric number, where \{RSS\} _{d=1}^D are the set of residual sum of squares of D base kernels.

Value

A_est

(matrix, n*n) A list of estimated kernel matrices.

u_hat

(vector of length K) A vector of weights of the kernels in the library.

Author(s)

Wenying Deng

References

Jeremiah Zhe Liu and Brent Coull. Robust Hypothesis Test for Nonlinear Effect with Gaus- sian Processes. October 2017.

Xiang Zhan, Anna Plantinga, Ni Zhao, and Michael C. Wu. A fast small-sample kernel inde- pendence test for microbiome community-level association analysis. December 2017.

Arnak S. Dalalyan and Alexandre B. Tsybakov. Aggregation by Exponential Weighting and Sharp Oracle Inequalities. In Learning Theory, Lecture Notes in Computer Science, pages 97– 111. Springer, Berlin, Heidelberg, June 2007.

See Also

mode: tuning


IrisTeng/CVEK documentation built on May 31, 2019, 4:50 p.m.