estimate_base: Estimating Projection Matrices

Description Usage Arguments Details Value Author(s) References Examples

Description

Calculate the estiamted projection matrices for every kernels in the kernel library.

Usage

1
estimate_base(n, kern_size, Y, X1, X2, kern_list, mode, lambda)

Arguments

n

(integer) A numeric number specifying the number of observations.

kern_size

(integer, =K) A numeric number specifying the number of kernels in the kernel library.

Y

(vector of length n) Reponses of the dataframe.

X1

(dataframe, n*p1) The first type of factor in the dataframe (could contains several subfactors).

X2

(dataframe, n*p2) The second type of factor in the dataframe (could contains several subfactors).

kern_list

(list of length K) A list of kernel functions given by user.

mode

(character) A character string indicating which tuning parameter criteria is to be used.

lambda

(numeric) A numeric string specifying the range of noise to be chosen. The lower limit of lambda must be above 0.

Details

For a given mode, this function return a list of projection matrices for every kernels in the kernel library and a n*kern_size matrix indicating errors.

Value

A_hat

(list of length K) A list of projection matrices for every kernels in the kernel library.

error_mat

(matrix, n*K) A n\*kern_size matrix indicating errors.

Author(s)

Wenying Deng

References

Jeremiah Zhe Liu and Brent Coull. Robust Hypothesis Test for Nonlinear Effect with Gaus- sian Processes. October 2017.

Examples

1
2
estimate_base(n = 100, kern_size = 3, Y, X1, X2, kern_list,
mode = "loocv", lambda = exp(seq(-5, 5)))

IrisTeng/CVEK documentation built on May 31, 2019, 4:50 p.m.