Description Usage Arguments Details Value Author(s) References
Calculate tuning parameters based on AICc.
1 | tuning_AICc(Y, K_mat, lambda)
|
Y |
(vector of length n) Reponses of the dataframe. |
K_mat |
(matrix, n*n) Estimated ensemble kernel matrix. |
lambda |
(numeric) A numeric string specifying the range of noise to be chosen. The lower limit of lambda must be above 0. |
Akaike Information Criteria
λ_{AICc}=\underset{λ \in Λ}{argmin}\Big\{log\; y^{\star T}(I-A_λ)^2y^\star+\frac{2[tr(A_λ)+2]}{n-tr(A_λ)-3}\Big\}
lambda0 |
(numeric) The estimated tuning parameter. |
Wenying Deng
Philip S. Boonstra, Bhramar Mukherjee, and Jeremy M. G. Taylor. A Small-Sample Choice of the Tuning Parameter in Ridge Regression. July 2015.
Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition. Springer Series in Statistics. Springer- Verlag, New York, 2 edition, 2009.
Hirotogu Akaike. Information Theory and an Extension of the Maximum Likelihood Princi- ple. In Selected Papers of Hirotugu Akaike, Springer Series in Statistics, pages 199–213. Springer, New York, NY, 1998.
Clifford M. Hurvich and Chih-Ling Tsai. Regression and time series model selection in small samples. June 1989.
Hurvich Clifford M., Simonoff Jeffrey S., and Tsai Chih-Ling. Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. January 2002.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.