Description Usage Arguments Details Value Author(s) References Examples
Calculate tuning parameters based on given criteria.
1 |
Y |
(vector of length n) Reponses of the dataframe. |
K_mat |
(matrix, n*n) Estimated ensemble kernel matrix. |
mode |
(character) A character string indicating which tuning parameter criteria is to be used. |
lambda |
(numeric) A numeric string specifying the range of noise to be chosen. The lower limit of lambda must be above 0. |
There are four tuning parameter selections here:
leave-one-out Cross Validation
λ_{n-CV}=\underset{λ \in Λ}{argmin}\;\Big\{log\;y^{\star T}[I-diag(A_λ)-\frac{1}{n}I]^{-1}(I-A_λ)^2[I-diag(A_λ)-\frac{1}{n}I]^{-1}y^\star \Big\}
Akaike Information Criteria
λ_{AICc}=\underset{λ \in Λ}{argmin}\Big\{log\; y^{\star T}(I-A_λ)^2y^\star+\frac{2[tr(A_λ)+2]}{n-tr(A_λ)-3}\Big\}
Generalized Cross Validation
λ_{GCVc}=\underset{λ \in Λ}{argmin}\Big\{log\; y^{\star T}(I-A_λ)^2y^\star-2log[1-\frac{tr(A_λ)}{n}-\frac{2}{n}]_+\Big\}
Generalized Maximum Profile Marginal Likelihood
λ_{GMPML}=\underset{λ \in Λ}{argmin}\Big\{log\; y^{\star T}(I-A_λ)y^\star-\frac{1}{n-1}log \mid I-A_λ \mid \Big\}
lambda0 |
(numeric) The estimated tuning parameter. |
Wenying Deng
Philip S. Boonstra, Bhramar Mukherjee, and Jeremy M. G. Taylor. A Small-Sample Choice of the Tuning Parameter in Ridge Regression. July 2015.
Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition. Springer Series in Statistics. Springer- Verlag, New York, 2 edition, 2009.
Hirotogu Akaike. Information Theory and an Extension of the Maximum Likelihood Princi- ple. In Selected Papers of Hirotugu Akaike, Springer Series in Statistics, pages 199–213. Springer, New York, NY, 1998.
Clifford M. Hurvich and Chih-Ling Tsai. Regression and time series model selection in small samples. June 1989.
Hurvich Clifford M., Simonoff Jeffrey S., and Tsai Chih-Ling. Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. January 2002.
1 2 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.