estimate_noise: Estimating Noise

Description Usage Arguments Value Author(s) References Examples

Description

An implementation of Gaussian processes for estimating noise.

Usage

1
estimate_noise(Y, lambda_hat, beta_hat, alpha_hat, K_hat)

Arguments

Y

(vector of length n) Reponses of the dataframe.

lambda_hat

(numeric) The selected tuning parameter based on the estimated ensemble kernel matrix.

beta_hat

(numeric) Estimated bias of the model.

alpha_hat

(vector of length n) Estimated coefficients of the estimated ensemble kernel matrix.

K_hat

(matrix, n*n) Estimated ensemble kernel matrix.

Value

sigma2_hat

(numeric) The estimated noise of the fixed effects.

SSE

(numeric) The estimated noise of the fixed effects.

A

(matrix) The estimated noise of the fixed effects.

Author(s)

Wenying Deng

References

Jeremiah Zhe Liu and Brent Coull. Robust Hypothesis Test for Nonlinear Effect with Gaus- sian Processes. October 2017.

Examples

1
sigma2_hat <- estimate_noise(Y, lam, beta0, alpha0, K_gpr)

IrisTeng/CVEK documentation built on May 31, 2019, 4:50 p.m.