# Copyright 2019 Battelle Memorial Institute; see the LICENSE file.
#' module_socioeconomics_L242.Bld_Inc_Elas_scenarios
#'
#' Calculates building income elasticity for each GCAM region by linear interpolation of assumption data
#'
#' @param command API command to execute
#' @param ... other optional parameters, depending on command
#' @return Depends on \code{command}: either a vector of required inputs,
#' a vector of output names, or (if \code{command} is "MAKE") all
#' the generated outputs: \code{L242.IncomeElasticity_bld_GCAM3}, \code{object}. The corresponding file in the
#' original data system was \code{L242.Bld_Inc_Elas_scenarios.R} (socioeconomics level2).
#' @details Takes per-capita GDP from SSP scenarios in each region.
#' Then calculates building income elasticity for each region by linear interpolation of assumption data.
#' @importFrom assertthat assert_that
#' @importFrom dplyr arrange filter left_join mutate select transmute
#' @importFrom stats approx
#' @author RH April 2017
module_socioeconomics_L242.Bld_Inc_Elas_scenarios <- function(command, ...) {
if(command == driver.DECLARE_INPUTS) {
return(c(FILE = "common/GCAM_region_names",
FILE = "socioeconomics/A42.inc_elas",
"L102.pcgdp_thous90USD_Scen_R_Y",
"L101.Pop_thous_GCAM3_R_Y",
"L102.gdp_mil90usd_GCAM3_R_Y"))
} else if(command == driver.DECLARE_OUTPUTS) {
return(c("L242.IncomeElasticity_bld_gSSP1",
"L242.IncomeElasticity_bld_gSSP2",
"L242.IncomeElasticity_bld_gSSP3",
"L242.IncomeElasticity_bld_gSSP4",
"L242.IncomeElasticity_bld_gSSP5",
"L242.IncomeElasticity_bld_SSP1",
"L242.IncomeElasticity_bld_SSP2",
"L242.IncomeElasticity_bld_SSP3",
"L242.IncomeElasticity_bld_SSP4",
"L242.IncomeElasticity_bld_SSP5",
"L242.IncomeElasticity_bld_GCAM3"))
} else if(command == driver.MAKE) {
GCAM_region_ID <- value <- year <- pcgdp_90thousUSD <- scenario <-
region <- energy.final.demand <- income.elasticity <- . <-
value.x <- value.y <- NULL # silence package check.
all_data <- list(...)[[1]]
# Load required inputs
GCAM_region_names <- get_data(all_data, "common/GCAM_region_names")
A42.inc_elas <- get_data(all_data, "socioeconomics/A42.inc_elas")
L102.pcgdp_thous90USD_Scen_R_Y <- get_data(all_data, "L102.pcgdp_thous90USD_Scen_R_Y", strip_attributes = TRUE) %>%
ungroup() %>%
rename(pcgdp_90thousUSD = value) %>%
mutate(year = as.integer(year))
L101.Pop_thous_GCAM3_R_Y <- get_data(all_data, "L101.Pop_thous_GCAM3_R_Y")
L102.gdp_mil90usd_GCAM3_R_Y <- get_data(all_data, "L102.gdp_mil90usd_GCAM3_R_Y", strip_attributes = TRUE)
# ===================================================
# Linearly interpolate income elasticity for each level of per-capita GDP,
# using the assumption data
L242.pcgdp_thous90USD_Scen_R_Y <- L102.pcgdp_thous90USD_Scen_R_Y %>%
left_join_error_no_match(GCAM_region_names, by = "GCAM_region_ID") %>%
filter(year %in% MODEL_FUTURE_YEARS) %>%
# Using approx rather than approx_fun because data is from assumption file, not in our tibble
mutate(income.elasticity = approx(x = A42.inc_elas$pcgdp_90thousUSD, y = A42.inc_elas$inc_elas,
xout = pcgdp_90thousUSD,
# Rule 2 means that data outside of the interval of input
# data will be assigned the cloest data extreme
rule = 2)[['y']] %>% round(3),
energy.final.demand = "building") %>%
select(scenario, region, energy.final.demand, year, income.elasticity) %>%
arrange(year)
# Split by scenario and remove scenario column from each tibble
L242.pcgdp_thous90USD_Scen_R_Y <- L242.pcgdp_thous90USD_Scen_R_Y %>%
split(.$scenario) %>%
lapply(function(df) {select(df, -scenario) %>%
add_units("Unitless (% change in service demand / % change in income)") %>%
add_comments("Uses previously calculated per-capita GDP assumptions for all SSP scenarios") %>%
add_comments("Building income elasticity for each GCAM region generated by linear interpolation of assumption data") %>%
add_precursors("common/GCAM_region_names", "socioeconomics/A42.inc_elas",
"L102.pcgdp_thous90USD_Scen_R_Y") })
# L242.IncomeElasticity_bld_GCAM3: building sector income elasticity for GCAM 3.0 socioeconomics
# For the GCAM 3.0 scenario, calculate the per-capita GDP
L242.IncomeElasticity_bld_GCAM3 <- L102.gdp_mil90usd_GCAM3_R_Y %>%
left_join_error_no_match(L101.Pop_thous_GCAM3_R_Y, by = c("GCAM_region_ID", "year")) %>%
filter(year %in% MODEL_FUTURE_YEARS) %>%
left_join_error_no_match(GCAM_region_names, by = "GCAM_region_ID") %>%
transmute(region, year, pcgdp_90thousUSD = value.x / value.y) %>%
# Using approx rather than approx_fun because data is from assumption file, not in our tibble
mutate(income.elasticity = approx(x = A42.inc_elas$pcgdp_90thousUSD, y = A42.inc_elas$inc_elas,
xout = pcgdp_90thousUSD,
# Rule 2 means that data outside of the interval of input
# data will be assigned the cloest data extreme
rule = 2)[['y']] %>% round(3),
energy.final.demand = "building") %>%
select(region, energy.final.demand, year, income.elasticity)
# ===================================================
# Produce outputs
L242.pcgdp_thous90USD_Scen_R_Y[["gSSP1"]] %>%
add_title("Building Income Elasticity: gSSP1") %>%
add_legacy_name("L242.IncomeElasticity_bld_gSSP1") ->
L242.IncomeElasticity_bld_gSSP1
L242.pcgdp_thous90USD_Scen_R_Y[["gSSP2"]] %>%
add_title("Building Income Elasticity: gSSP2") %>%
add_legacy_name("L242.IncomeElasticity_bld_gSSP2") ->
L242.IncomeElasticity_bld_gSSP2
L242.pcgdp_thous90USD_Scen_R_Y[["gSSP3"]] %>%
add_title("Building Income Elasticity: gSSP3") %>%
add_legacy_name("L242.IncomeElasticity_bld_gSSP3") ->
L242.IncomeElasticity_bld_gSSP3
L242.pcgdp_thous90USD_Scen_R_Y[["gSSP4"]] %>%
add_title("Building Income Elasticity: gSSP4") %>%
add_legacy_name("L242.IncomeElasticity_bld_gSSP4") ->
L242.IncomeElasticity_bld_gSSP4
L242.pcgdp_thous90USD_Scen_R_Y[["gSSP5"]] %>%
add_title("Building Income Elasticity: gSSP5") %>%
add_legacy_name("L242.IncomeElasticity_bld_gSSP5") ->
L242.IncomeElasticity_bld_gSSP5
L242.pcgdp_thous90USD_Scen_R_Y[["SSP1"]] %>%
add_title("Building Income Elasticity: SSP1") %>%
add_legacy_name("L242.IncomeElasticity_bld_SSP1") ->
L242.IncomeElasticity_bld_SSP1
L242.pcgdp_thous90USD_Scen_R_Y[["SSP2"]] %>%
add_title("Building Income Elasticity: SSP2") %>%
add_legacy_name("L242.IncomeElasticity_bld_SSP2") ->
L242.IncomeElasticity_bld_SSP2
L242.pcgdp_thous90USD_Scen_R_Y[["SSP3"]] %>%
add_title("Building Income Elasticity: SSP3") %>%
add_legacy_name("L242.IncomeElasticity_bld_SSP3") ->
L242.IncomeElasticity_bld_SSP3
L242.pcgdp_thous90USD_Scen_R_Y[["SSP4"]] %>%
add_title("Building Income Elasticity: SSP4") %>%
add_legacy_name("L242.IncomeElasticity_bld_SSP4") ->
L242.IncomeElasticity_bld_SSP4
L242.pcgdp_thous90USD_Scen_R_Y[["SSP5"]] %>%
add_title("Building Income Elasticity: SSP5") %>%
add_legacy_name("L242.IncomeElasticity_bld_SSP5") ->
L242.IncomeElasticity_bld_SSP5
L242.IncomeElasticity_bld_GCAM3 %>%
add_title("Building Income Elasticity: GCAM3") %>%
add_units("Unitless (% change in service demand / % change in income)") %>%
add_comments("Uses previously calculated per-capita GDP assumptions of building elastciity") %>%
add_comments("Building income elasticity for each GCAM region generated by linear interpolation of assumption data") %>%
add_legacy_name("L242.IncomeElasticity_bld_GCAM3") %>%
add_precursors("common/GCAM_region_names", "socioeconomics/A42.inc_elas",
"L101.Pop_thous_GCAM3_R_Y", "L102.gdp_mil90usd_GCAM3_R_Y") ->
L242.IncomeElasticity_bld_GCAM3
return_data(L242.IncomeElasticity_bld_gSSP1,
L242.IncomeElasticity_bld_gSSP2,
L242.IncomeElasticity_bld_gSSP3,
L242.IncomeElasticity_bld_gSSP4,
L242.IncomeElasticity_bld_gSSP5,
L242.IncomeElasticity_bld_SSP1,
L242.IncomeElasticity_bld_SSP2,
L242.IncomeElasticity_bld_SSP3,
L242.IncomeElasticity_bld_SSP4,
L242.IncomeElasticity_bld_SSP5,
L242.IncomeElasticity_bld_GCAM3)
} else {
stop("Unknown command")
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.