#' gcamland: A stand-alone implementation of the GCAM land allocation subsystem.
#'
#' The \code{gcamland} package replicates the land allocation decisions made in
#' GCAM (\url{https:://github.com/jgcri/gcam-core}). The equations are documented in
#' Wise et al. (2014). \code{gcamland} takes in prices and agricultural productivity
#' growth and calculates land allocation. The model can operate in either
#' hindcast (1975-2015) or future mode (2010-2100), running either single
#' simulations or large ensembles.
#'
#' @section Usage:
#'
#' \strong{Basic Usage}
#'
#' To run an individual scenario, first generate a structure to hold the
#' scenario parameters. The scenario structure can be passed directly to the
#' main model function. Then the model can be run with the
#' \code{\link{run_model}} function.
#' \preformatted{
#' sceninfo <- ScenarioInfo(aExpectationType = "Perfect", aScenarioType = "Hindcast", aScenarioName = "Perfect_Hindcast", aFileName = "Perfect_Hindcast")
#' rslt <- run_model(sceninfo)
#' }
#' The results will be returned as a data frame. If the \code{aVerbose}
#' argument is set to \code{TRUE}, the results also written as a series of rds
#' (compressed R binaries that can be loaded with \code{\link[base]{readRDS}}
#' function) and csv files in the directory specified.
#'
#' \strong{Running Ensembles}
#'
#' The \code{\link{run_ensemble_bayes}} function function will generate and run a
#' collection of scenarios with varying parameters. The parameters are sampled
#' quasi-randomly using a Sobol sequence. The arguments to \code{run_ensemble_bayes} are the
#' number of samples (for each expectation model, so 3 times that many will
#' actually be run), output directory, and (optionally) scenario type.
#'
#' Ensembles can (and probably should) be run in parallel using the
#' \code{doParallel} package. To do this, just specify the number of cores to
#' use in the parallel calculation, and \code{doParallel} will take care of the
#' rest.
#' \preformatted{
#' registerDoParallel(cores=6)
#' ensemble_scenarios <- run_ensemble_bayes(1000, './ensemble-output')
#' }
#' The return value from \code{run_ensemble_bayes} is a list of \code{ScenarioInfo}
#' structures for the scenarios that were run.
#'
#' For very large ensembles ensembles you will probably want to run them in
#' parallel on a cluster. There is an example batch script (for the SLURM
#' cluster resource manager) in \code{scripts/jobrun.zsh}. You will want to
#' customize the output directory and number of iterations to your needs, then
#' submit it with sbatch. For example, to run 10 batches, each with 960 samples
#' for each of the three models, submit this batch request:
#' \preformatted{
#' sbatch --array=0-9 jobrun.zsh
#' }
#'
#' @section Bayesian Inference:
#'
#' There are several functions to support Bayesian inference on the ensemble
#' results. The \code{\link{run_bayes}} function compares the model outputs to
#' the historical data and computes posterior probability densities for the
#' samples. The results of \code{run_bayes} are stored in the
#' \code{ScenarioInfo} structures. You can use the \code{\link{grand_table_bayes}}
#' function to reorganize these results into a table for more convenient
#' analysis.
#'
#' Other Bayesian analysis functions include:
#' \describe{
#' \item{\code{\link{MAP_bayes}}}{Maximum a posteriori parameter
#' estimate.}
#' \item{\code{\link{EV}}}{Expectation value for parameters.}
#' \item{\code{\link{HPDI}}}{Highest Posterior Density Interval (a type of
#' confidence interval for parameters)}
#' \item{\code{\link{waic}}}{Widely Applicable Information Criterion (WAIC), an
#' estimate of a model's out of sample performance.}
#' }
#'
#' @docType package
#' @name gcamland
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.