#' @name ISMCMC
#' @title Independence Sampler/RWM MCMC
#' @description
#' Generates dependent samples from target distribution
#' using a Independence Sampler/RWM MCMC proposal scheme.
#' @param init initial value of epidemic parameters
#' @param U_init initial value of random variables used to construct
#' epidemic trajectory.
#' @param epiModel epidemic model
#' @param obsFrame Generator function for observational model.
#' @param epiSample Observed epidemic data.
#' @param I0 Initial state of the epidemic, which assumed to be known.
#' @param alpha Observational parameters to be passed on to the log-likelihood function
#' generated by `obsFrame(X_sim)`
#' @param logPrior Functions which calculate log-density of the assumed priors of the
#' epidemic parameters.
#' @param lambda Random Walk Metropolis (RWM) proposal scale parameter.
#' @param V A square matrix containing the covariance values for RWM proposal. Shape
#' of matrix should match the length of the init parameter.
#' @param S Number of non-centered random variables to be 'refreshed' in Independence
#' Sampler proposal step.
#' @param noIts Number of iterations of MCMC sampler scheme to carry out.
#' @return
#' A matrix of MCMC samples and proposal acceptance rate of the sample.
#'
#' @export
ISMCMC <- function(init, U_init, epiModel, obsFrame, epiSample, I0, alpha, logPrior, lambda, V, S, noIts){
# Set up functions
k <- length(init)
r <- length(U_init)
# Estimate Likelihood for initial parameters
epi_init <- epiModel$sim(list(I0, init, U_init))
obsModelInit <- obsFrame(epi_init)
logLikeCurr <- obsModel$llh(epiSample, alpha)
while(is.infinite(logLikeCurr)){
U_init <- matrix(runif(r, 0, 1), ncol = ncol(U_init), nrow = nrow(U_init))
epi_init <- epiModel$sim(list(I0, init, U_init))
obsModelInit <- obsFrame(epi_init)
logLikeCurr <- obsModelInit$llh(epiSample, alpha)
}
curr <- init
U_curr <- U_init
epi_curr <- epi_init
obsModelCurr <- obsModelInit
accept.theta <- 0
accept.S <- 0
draws <- matrix(ncol = k + 1, nrow = noIts)
for(i in 1:noIts){
# Propose new epidemic parameters
prop <- abs(curr + mvnfast::rmvn(1, mu = rep(0, k), sigma = lambda*V))
# Estimate Likelihood
epiProp <- epiModel$sim(list(I0, prop, U_curr))
obsModelProp <- obsFrame(epiProp)
logLikeProp <- obsModelProp$llh(epiSample, alpha)
if(!is.infinite(logLikeProp)){
logAccProb <- (logLikeProp + logPrior(prop)) - (logLikeCurr + logPrior(curr))
#print(logAccPRob)
if(log(runif(1, 0, 1)) < logAccProb){
curr <- prop
logLikeCurr <- logLikeProp
accept.theta <- accept.theta + 1
}
}
U_prop <- U_curr
U_prop[sample(1:r, S, replace = F)] <- runif(S, 0, 1)
# Estimate Likelihood
epiProp <- epiModel$sim(list(I0, curr, U_prop))
obsModelProp <- obsFrame(epiProp)
logLikeProp <- obsModelProp$llh(epiSample, alpha)
if(!is.infinite(logLikeProp)){
logAccProb <- (logLikeProp) - (logLikeCurr)
#print(logAccPRob)
if(log(runif(1, 0, 1)) < logAccProb){
U_curr <- U_prop
logLikeCurr <- logLikeProp
accept.S <- accept.S + 1
}
}
draws[i, ] <- c(curr, logLikeCurr)
}
return(list(draws = draws, acceptRate = c(accept.theta/noIts, accept.S/noIts)))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.