mcmc_pwc: RJMCMC: MCMC.

Description Usage Arguments Value

View source: R/PWC.R

Description

RJMCMC: MCMC.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
mcmc_pwc(
  d.spikes,
  end.time,
  iter,
  burn,
  k.max,
  lambda,
  kappa,
  mu,
  kappa0,
  hyper.param = c(1, 0.001),
  sigma.h = NULL,
  start.hyper = 1000,
  hyper.initial = 0.1,
  T.min.param = NULL,
  T.min.initial = 0.05,
  sigma.t = NULL,
  ISI.type = "Gamma",
  do.log = TRUE,
  show.iter = FALSE,
  which.heights = "independent"
)

Arguments

d.spikes

Data frame containing spike sequences.

end.time

End time of the experiment

iter

Number of iterations to record

burn

Number of iterations to burn before recording.

k.max

Maximum number of change points in RJMCMC.

lambda

Parameter of the Poisson distribution.

kappa

parameter of priors height

mu

parameter of priors height

kappa0

parameter of priors height

hyper.param

Value of the hyper parameter, or values for the gamma prior of the hyper parameter.

sigma.h

Sigma used in RW-Metropolis for the ISI parameter.

start.hyper

Iteration number to begin the ISI parameter.

hyper.initial

Initial value of the ISI parameter.

T.min.param

Value of the refractory period, or values for the gamma prior of the refractory period parameter.

T.min.initial

Initial value of the refractory period.

sigma.t

Sigma used in RW-Metropolis for the refractory period parameter.

ISI.type

The ISI distribution.

do.log

Flag, where if do.log is true the calculations are computed on the log scale.

show.iter

Flag for whether to print the number of iterations complete into the console.

which.heights

Method for prior distribution of heights, either 'independent' or 'martingale'.

Value

Iterations of the MCMC algorithm.


JPNotts/Package documentation built on Oct. 5, 2021, 2:04 p.m.