| shortfall | R Documentation | 
Fits the shortfall model for risky choices and judgments (Andraszewicz, 2014).
shortfall_d() fits the shortfall model for discrete responses (select option).
shortfall_c() fits the shortfall model for continuous responses (judge options).
shortfall_d(formula, asp, data, choicerule, fix = list(), options = NULL) shortfall_c(formula, asp, data, fix = list(), options = NULL)
formula | 
 A formula, the variables in   | 
asp | 
 A formula or a string, the variable in   | 
data | 
 A data frame, the data to be modeled.  | 
fix | 
 (optional) A list with parameter-value pairs of fixed parameters. If missing all free parameters are estimated. If set to  
  | 
options | 
 (optional) A list, list entries change the modeling procedure. For example,   | 
discount | 
 A number, how many initial trials to not use during parameter fitting.  | 
... | 
 other arguments, ignored.  | 
The model trades off the expected value of a risky option with a β-weighted measure of the risk of the option. Risk is defined as the chance of falling short of a δ-weighted aspiration level (see Andraszewicz, 2014). Model inputs are the risky options and the aspiration level. The subjective value v of option o given parameters δ, β is modeled by
v(o) = EV(o) - β R(o)
R(o) = ∑_i ( p_i ( max [ δ asp_{o} - x_{o,i} , 0 ] )
.
beta: the weight of the risk, risk aversion (0 ≤ β ≤ 10).
delta: the weight of the aspiration level (0 ≤ δ ≤ 1).
 In shortfall_d(): If choicerule = "softmax": tau  is the temperature or choice softness, higher values cause more equiprobable choices. If choicerule = "epsilon": eps is the error proportion, higher values cause more errors from maximizing.
Returns a cognitive model object, which is an object of class cm. A model, that has been assigned to m, can be summarized with summary(m) or anova(m). The parameter space can be viewed using pa. rspace(m), constraints can be viewed using constraints(m).
Jana B. Jarecki, jj@janajarecki.com
Andraszewicz, S. (2014). Quantitative analysis of risky decision making in economic environments \(Doctoral dissertation, University of Basel\). doi:10.5451/unibas-006268585
Other cognitive models: 
baseline_const_c(),
bayes(),
choicerules,
cpt,
ebm(),
hm1988(),
shift(),
threshold(),
utility
# Make some data ----------------------------------- dt <- data.frame( x1 = rep(1,3), x2 = rep(2,3), px = rep(.5,3), y1 = 0:2, y2 = rep(3,3), py = rep(.5,3), aspiration = rep(1,3), choice = c(1,1,0)) # Make model ---------------------------------------- # 1. Continuous model - normal log likelihood m <- shortfall_c( formula = choice ~ x1 + px + x2, asp = "aspiration", data = dt) m # view model predict(m) # predict values/ratings parspace(m) # view parameter space # 2. Discrete model - binomial log likelihood m <- shortfall_d( formula = choice ~ x1 + px + x2 | y1 + py + y2, asp = "aspiration", data = dt, choicerule = "softmax") m # View model predict(m) # predict choice, Pr(select "x") parspace(m) # View parameter space
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.