shortfall | R Documentation |
Fits the shortfall model for risky choices and judgments (Andraszewicz, 2014).
shortfall_d()
fits the shortfall model for discrete responses (select option).
shortfall_c()
fits the shortfall model for continuous responses (judge options).
shortfall_d(formula, asp, data, choicerule, fix = list(), options = NULL) shortfall_c(formula, asp, data, fix = list(), options = NULL)
formula |
A formula, the variables in |
asp |
A formula or a string, the variable in |
data |
A data frame, the data to be modeled. |
fix |
(optional) A list with parameter-value pairs of fixed parameters. If missing all free parameters are estimated. If set to
|
options |
(optional) A list, list entries change the modeling procedure. For example, |
discount |
A number, how many initial trials to not use during parameter fitting. |
... |
other arguments, ignored. |
The model trades off the expected value of a risky option with a β-weighted measure of the risk of the option. Risk is defined as the chance of falling short of a δ-weighted aspiration level (see Andraszewicz, 2014). Model inputs are the risky options and the aspiration level. The subjective value v of option o given parameters δ, β is modeled by
v(o) = EV(o) - β R(o)
R(o) = ∑_i ( p_i ( max [ δ asp_{o} - x_{o,i} , 0 ] )
.
beta
: the weight of the risk, risk aversion (0 ≤ β ≤ 10).
delta
: the weight of the aspiration level (0 ≤ δ ≤ 1).
In shortfall_d()
: If choicerule = "softmax"
: tau
is the temperature or choice softness, higher values cause more equiprobable choices. If choicerule = "epsilon"
: eps
is the error proportion, higher values cause more errors from maximizing.
Returns a cognitive model object, which is an object of class cm. A model, that has been assigned to m
, can be summarized with summary(m)
or anova(m)
. The parameter space can be viewed using pa. rspace(m)
, constraints can be viewed using constraints(m)
.
Jana B. Jarecki, jj@janajarecki.com
Andraszewicz, S. (2014). Quantitative analysis of risky decision making in economic environments \(Doctoral dissertation, University of Basel\). doi:10.5451/unibas-006268585
Other cognitive models:
baseline_const_c()
,
bayes()
,
choicerules
,
cpt
,
ebm()
,
hm1988()
,
shift()
,
threshold()
,
utility
# Make some data ----------------------------------- dt <- data.frame( x1 = rep(1,3), x2 = rep(2,3), px = rep(.5,3), y1 = 0:2, y2 = rep(3,3), py = rep(.5,3), aspiration = rep(1,3), choice = c(1,1,0)) # Make model ---------------------------------------- # 1. Continuous model - normal log likelihood m <- shortfall_c( formula = choice ~ x1 + px + x2, asp = "aspiration", data = dt) m # view model predict(m) # predict values/ratings parspace(m) # view parameter space # 2. Discrete model - binomial log likelihood m <- shortfall_d( formula = choice ~ x1 + px + x2 | y1 + py + y2, asp = "aspiration", data = dt, choicerule = "softmax") m # View model predict(m) # predict choice, Pr(select "x") parspace(m) # View parameter space
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.