View source: R/model-treshold.R
threshold | R Documentation |
treshold()
fits a threshold model with the threshold as free parameter.
treshold_c()
models continuous responses in form of the distance to a threshold
treshold_d()
models discrete choices given the distance to a threshold
threshold( formula, data, fix = list(), choicerule = NULL, mode, discount = 0L, options = list(), ... ) threshold_c( formula, data, fix = list(), choicerule = NULL, discount = 0, options = list(), ... ) threshold_d( formula, data, fix = list(), choicerule = "softmax", discount = 0, options = list(), ... )
formula |
A formula, the variables in |
data |
A data frame, the data to be modeled. |
fix |
(optional) A list with parameter-value pairs of fixed parameters. If missing all free parameters are estimated. If set to
|
discount |
A number, how many initial trials to not use during parameter fitting. |
options |
(optional) A list, list entries change the modeling procedure. For example, |
... |
other arguments, ignored. |
Given the formula y ~ a
the model predicts y = 1 for a >= nu
and y = 0 for a < nu
A model of class "treshold".
nu
: the threshold.
Returns a cognitive model object, which is an object of class cm. A model, that has been assigned to m
, can be summarized with summary(m)
or anova(m)
. The parameter space can be viewed using pa. rspace(m)
, constraints can be viewed using constraints(m)
.
Jana B. Jarecki, jj@janajarecki.com
Jana B. Jarecki
Other cognitive models:
baseline_const_c()
,
bayes()
,
choicerules
,
cpt
,
ebm()
,
hm1988()
,
shift()
,
shortfall
,
utility
D <- data.frame( y = rep(0:1, each=5), a = 1:10) M <- threshold_c(y ~ a, D, fix="start") # fixed par. to start values predict(M) # predict dist. to threshold anova(M) # anova-like table summary(M) # summarize M <- threshold_d(y ~ a, D, fix="start") # fixed par. to start values predict(M) # predict dist. to threshold anova(M) # anova-like table summary(M) # summarize M$MSE() # mean-squared error ### Binary response given a threshold # -------------------------------------------- M <- threshold(y ~ a, D, fix="start", choicerule = "softmax") predict(M) # --"-- maximum posterior anova(M) # anova-like table summary(M) # summarize M$MSE() # mean-squared error ### Parameter specification and fitting ---------------------------------------- # Use a response variable, y, to which we fit parameter threshold(y ~ a, D, fix = "start", "softmax") # "start" fixes all par., # and fits none threshold(y ~ a , D, list(nu=2), "softmax") # fix threshold nu to 2 threshold(y ~ a, D, list(tau=0.5), "softmax") # fix soft-max tau to 1 threshold(y ~ a, D, choicerule = "softmax") # nu and tau free param
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.