Description Usage Arguments Value Examples
View source: R/assess_quality.R
This function takes the GECO scores table generated by the score_clusters function and finds the ROC/AUC values for the scores. These scores are then arranged into a dataframe for display with ggplot2.
1 | assess_quality(GECO_scores)
|
GECO_scores |
The scores dataframe output by score_clusters. |
A ggplot2 object ready for plotting e.g. plot(returned_object)
1 2 3 4 5 6 7 8 9 | # Create pseudo scores tables: >1 required
df10 <- data.frame(clust_num = sample(1:10, 200, replace = TRUE), gene_name = sample(paste0(rep("Gene.", 200), seq(1:200)), 200, replace = FALSE), pos_vec = sample(c(rep("FALSE",197), rep("TRUE",3)), 200, replace = FALSE), prob_vec = sample(runif(10), 200, replace = TRUE))
df12 <- data.frame(clust_num = sample(1:10, 200, replace = TRUE), gene_name = sample(paste0(rep("Gene.", 200), seq(1:200)), 200, replace = FALSE), pos_vec = sample(c(rep("FALSE",197), rep("TRUE",3)), 200, replace = FALSE), prob_vec = sample(runif(10), 200, replace = TRUE))
# Create the scores structure and insert our tables
scores <- list()
scores$`Ground Truth Set X`$`Iteration 1`$`10` <- df10
scores$`Ground Truth Set X`$`Iteration 1`$`12` <- df12
fig <- assess_quality(scores)
plot(fig)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.