# Test the lexical_sort function from R/example.R
library(data.table)
context("sort")
# check_between_HD_and_D<-function(HD1, D1){
# expect_equal(HD1$method, D1$method)
# expect_equal(HD1$ugroup_list, D1$ugroup_list)
# expect_equal(HD1$dimcontent, D1$dimcontent)
# expect_equal(HD1$ufreq_list, D1$ufreq_list)
# expect_lt(length(HD1$id_list),length(D1$id_list))
# expect_equal(length(HD1$id_list), dim(HD1$mdat)[1])
# expect_equal(length(HD1$uregion_list), dim(HD1$mdat)[2])
# expect_equal(length(HD1$uregion_list), dim(HD1$mdat)[3])
# expect_equal(length(HD1$utrial_list), dim(HD1$mdat)[4])
# expect_equal(length(HD1$ufreq_list), dim(HD1$mdat)[5])
#
#
# }
test_that("new longitudinal data analysis works",{
datapath = file.path(".","data","fMRI2")
cat(file = stderr(), paste0("\n current working dir = ", getwd(),"\n"))
Dorg <- readRDS(file.path(datapath,'Dorg.Rda'))
# nun erstellen wir aus dem Datensatz unseren Testdatensatz
D <- Dorg
# reduziere auf 3 Regionen
D$uregion_list = Dorg$uregion_list[1:3]
D$uregion_list_named = Dorg$uregion_list_named[1:3]
# reduziere auf 4 Subjects + einen der nur einmal vorkommt (ohne longitudinalen Wert)
D$id_list = Dorg$id_list[9:17]
D$df_BD = Dorg$df_BD[9:17]
D$mdat = Dorg$mdat[9:17,1:3,1:3,,,drop=F]
freq = c(TRUE)
g1 = 1
g2 = 1
t1 = 1
t2 = 2
####################################################################################
####################################################################################
# Testing the Funktion delete_subject_from_data_struct<-function(D = NULL, ids_to_keep = NULL, ids_to_delete = NULL)
to_delete_str = D$id_list[2:5]
to_delete_id = c(2:5)
to_keep_str = D$id_list[-c(2:5)]
to_keep_id = c(1:length(D$id_list))[-c(2:5)]
Dtmp1 <- delete_subject_from_data_struct(D=D, ids_to_keep = to_keep_str)
Dtmp2 <- delete_subject_from_data_struct(D=D, ids_to_keep = to_keep_id)
Dtmp3 <- delete_subject_from_data_struct(D=D, ids_to_delete = to_delete_str)
Dtmp4 <- delete_subject_from_data_struct(D=D, ids_to_delete = to_delete_id)
expect_equal(Dtmp1, Dtmp2)
expect_equal(Dtmp2, Dtmp3)
expect_equal(Dtmp3, Dtmp4)
expect_equal(length(Dtmp1$id_list),5)
expect_equal(dim(Dtmp1$mdat)[1],5)
expect_equal(nrow(Dtmp1$df_BD),5)
####################################################################################
####################################################################################
# get the data for the second time point
# die longitudinalen Daten sind kodiert als nummern hinter den IDs der Subjects XY001_1
# daher teilen wir hier die Subjects einfach entsprechend auf
filter_g1 = "Zeichen__1>0"
filter_g2 = "Zeichen__1>0"
ld_1 = "1"
ld_2 = "2, 3"
D1 <- get_data_by_longitudinal_info(D,as.numeric(unlist(strsplit(ld_1, split=","))))
expect_equal(length(D1$uregion_list), 3)
expect_equal(length(dim(D1$mdat)), 5)
expect_equal(dim(D1$mdat)[1], 5)
expect_equal(dim(D1$mdat)[2], 3)
expect_equal(dim(D1$mdat)[3], 3)
expect_equal(dim(D1$mdat)[4], 2)
expect_equal(dim(D1$mdat)[5], 1)
# D$df_BD$Zeichen__1 ... 297 822 488 801 268 564 202 796 257
Dtest <- D
gDtest <<-D
#cat(file = stderr(), paste0("\nnrow(D)= ", nrow(D$df_BD),"\n"))
#cat(file = stderr(), paste0("nrow(Dtest)= ", nrow(Dtest$df_BD),"\n"))
myfilter = "Zeichen__1>300"
expect_equal(nrow(Dtest$df_BD),9)
Dtest <- filter_datastruct(Dtest, group = 1, myfilter = myfilter)
#cat(file = stderr(), paste0(Dtest2$df_BD))
expect_equal(nrow(Dtest$df_BD),5)
#orgIDs ID Gruppe ToInclude Lektion Zeichen__1 Zeichen__2 Amin__1 Amin__2 Tippfehler__1 Tippfehler__2
#1: VP_05 ID005__1 1 1 3 297 442 101 153 5 16
#2: VP_05 ID005__2 1 1 3 822 916 283 315 27 29
#3: VP_06 ID006__1 1 1 3 488 507 168 176 15 21
#4: VP_06 ID006__2 1 1 3 801 757 277 262 29 29
#5: VP_07 ID007__1 1 1 3 268 334 94 118 14 19
#6: VP_07 ID007__2 1 1 3 564 551 192 188 11 14
#7: VP_08 ID008__1 1 1 3 202 338 68 116 2 9
#8: VP_08 ID008__2 1 1 3 796 725 273 245 22 10
#: VP_09 ID009__1 1 1 3 257 321 91 112 17 15
Dtest <- D
myfilter = "Zeichen__1>300, Tippfehler__1<20"
expect_equal(nrow(Dtest$df_BD),9)
Dtest <- filter_datastruct(Dtest, group = 1, myfilter = myfilter)
expect_equal(nrow(Dtest$df_BD),2)
# nun erneut mit Ausschluss von Subjects die nicht in beiden Messungen vorhanden sind
D_new <- split_data_by_longitudinal_info(D, as.numeric(unlist(strsplit(ld_1, split=","))),
as.numeric(unlist(strsplit(ld_2, split=","))),
is_exclude_not_reoccuring_subj = TRUE,
averagelong = TRUE)
D1 <- D_new$D1
D2 <- D_new$D2
data1 <- D1$mdat
data2 <- D2$mdat
expect_equal(length(D1$uregion_list), 3)
expect_equal(length(dim(D1$mdat)), 5)
expect_equal(dim(D1$mdat)[1], 4)
expect_equal(dim(D1$mdat)[1], nrow(D1$df_BD))
expect_equal(dim(D1$mdat)[1], length(D1$id_list))
expect_equal(dim(D1$mdat)[2], 3)
expect_equal(dim(D1$mdat)[3], 3)
expect_equal(dim(D1$mdat)[4], 2)
expect_equal(dim(D1$mdat)[5], 1)
expect_equal(length(D2$uregion_list), 3)
expect_equal(length(dim(D2$mdat)), 5)
expect_equal(dim(D2$mdat)[1], 4)
expect_equal(dim(D2$mdat)[1], nrow(D2$df_BD))
expect_equal(dim(D2$mdat)[1], length(D2$id_list))
expect_equal(dim(D2$mdat)[2], 3)
expect_equal(dim(D2$mdat)[3], 3)
expect_equal(dim(D2$mdat)[4], 2)
expect_equal(dim(D2$mdat)[5], 1)
freq = c(TRUE)
g1 = 1
g2 = 1
t1 = 1
t2 = 2
#cat(file = stderr(), "........\n\n")
d<-get_selected_data_considering_group_trial(D$mdat,g1,g2,t1,t2,freq, D$utrials, D$df_BD, method = "Connectivity")
cat(file = stderr(),paste0(".......explanation=", d$explanation,"\n"))
gdx <<- d
expect_equal(dim(d$data1)[1], 9)
expect_equal(dim(d$data2)[1], 9)
cat(file = stderr(), "\nthe end \n")
# subject 1 Trial 1
# LH_Vis_1 LH_Vis_2 LH_Vis_3
# LH_Vis_1 1.0000000 -0.2456532 0.2341862
# LH_Vis_2 -0.2456532 1.0000000 0.3027033
# LH_Vis_3 0.2341862 0.3027033 1.0000000
# M <- get_longitudinal_currently_selected_data3(D1, D2, g1, g2, t1, t2 ,freq,
#
# input$group1,
# input$group2,
# as.numeric(input$trial1),
# as.numeric(input$trial2),
# g_sel_freqs(),
# estimate_time_first = estimate_time_first())
# return(M)
# })
#
#
# d <- get_longitudinal_currently_selected_data(D1, D2, g1, g2, t1,t2,
# freq,
# trials = D1$utrial_list,
# regions = D1$uregion_list,
# tbl_beh = D1$df_BD,
# method = "RS")
#
#
#
#
# homogen_group_data = exclude_data_from_not_reoccuring_subjects(D1,D2)
# HD1 <- homogen_group_data$HD1
# HD2 <- homogen_group_data$HD2
# check_between_HD_and_D(HD1,D1)
# check_between_HD_and_D(HD2,D2)
#
#
# d1 <<- get_selected_data_considering_group_trial(HD1$mdat, g1, g2 ,t1,t2, freq, trials = HD1$utrial_list, tbl_beh = HD1$df_BD, method = HD1$method)
# expect_equal(d1$my_paired, FALSE)
# expect_equal(d1$data1, get_data_group_trial_freqmean(HD1$mdat,g1, t1, freq, tbl_beh = HD1$df_BD, method=HD1$method))
# expect_equal(d1$data2, get_data_group_trial_freqmean(HD1$mdat,g2, t2, freq, tbl_beh = HD1$df_BD, method=HD1$method))
# expect_equal(dim(d1$data1), c(2,3,3))
# expect_equal(dim(d1$data2), c(2,3,3))
#
#
# d2 <<- get_selected_data_considering_group_trial(HD2$mdat, g1,g2,t1,t2, freq, trials = HD2$utrial_list, tbl_beh = HD2$df_BD, method = HD2$method)
# expect_equal(d2$my_paired, FALSE)
# expect_equal(d2$data1, get_data_group_trial_freqmean(HD2$mdat,g1, t1, freq, tbl_beh = HD2$df_BD, method=HD2$method))
# expect_equal(d2$data2, get_data_group_trial_freqmean(HD2$mdat,g2, t2, freq, tbl_beh = HD2$df_BD, method=HD2$method))
# expect_equal(dim(d2$data1), c(2,3,3))
# expect_equal(dim(d2$data2), c(2,3,3))
#
#
#
# d <- get_currently_selected_data_long(HD1$mdat, g1, g2, t1, t2, freq,
# trials=HD1$utrial_list,
# regions=HD1$uregion_list,
# tbl_beh = HD1$df_BD,
# method = HD1$method,
# datalong = HD2$mdat)
# expect_equal(length(dim(d$mat_p)), 2)
# expect_equal(dim(d$mat_p)[1], 3)
# expect_equal(dim(d$mat_p)[2], 3)
#
# uregion_list <- readRDS(file.path(resultspath,"uregion_list.Rda"))
# utrial_list <- readRDS(file.path(resultspath,"utrial_list.Rda"))
# ufreq_list <- readRDS(file.path(resultspath,"ufreq_list.Rda"))
# tbl_behx <- readRDS(file.path(resultspath,"df_BD.Rda"))
# Ms <- readRDS(file.path(resultspath, "matrix_data.Rda"))
# D<-readRDS(file.path(resultspath, "D.Rda"))
# Dsave <<-D
# tbl_behx <- D$df_BD
#
# M <<- D$mdat
# expect_equal(M, Ms)
})
# mybasepath = file.path("../data", savedirname)
# saveRDS(uregion_list, file = file.path(mybasepath, "uregion_list.Rda"))
# saveRDS(utrial_list, file = file.path(mybasepath, "utrial_list.Rda" ))
# saveRDS(ufreq_list, file = file.path(mybasepath, "ufreq_list.Rda" ))
# saveRDS(id_list, file = file.path(mybasepath, "id_list.Rda" ))
# saveRDS(tbl_beh, file = file.path(mybasepath, "tbl_beh.Rda" ))
# saveRDS(D, file = file.path(mybasepath, "tbl_data.Rda" ))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.