R/02_exported_functions.R

Defines functions llrTest plotIt readWide

Documented in llrTest plotIt readWide

# readWide() -------------------------------------------------------------

#' Import measurement data
#'
#' Data from a given wide style csv-file is imported. While importing, the data
#' is converted into a long table
#'
#' @param file character, the name of the data file.
#' @param description numeric index vector of the columns containing
#' the description.
#' @param time numeric index of length 1: the time column.
#' @param header a logical value indicating whether the file contains
#' the names of the variables as its first line.
#' @param ... further arguments being passed to \link{read.csv}.
#'
#' @return data frame with columns "name", "time", "value" and other
#' columns describing the measurements.
#'
#' @export
#' @importFrom utils read.csv
#'
#' @examples
#' ## Import example data set
#' simDataWideFile <- system.file(
#'     "extdata", "simDataWide.csv",
#'     package = "blotIt"
#' )
#' readWide(simDataWideFile, description = seq_len(3))


readWide <- function(file, description = NULL, time = 1, header = TRUE, ...) {
  useData <- read.csv(file, header = header, ...)
  allNames <- colnames(useData)

  if (is.null(description)) {
    stop("Specify columns containing descriptions.")
  }
  if (is.character(description)) {
    noDescription <- which(colnames(useData) %in% description)
  } else {
    noDescription <- description
  }
  ## Check the index of the "time" column
  if (is.character(time)) {
    noTime <- which(colnames(useData) == time)
  } else {
    noTime <- time
  }

  ## Check availability of description and time
  if (length(noDescription) < length(description)) {
    warning(
      "Not all columns proposed by argument 'description' are available",
      " in file.\nTaking the available ones."
    )
  }

  if (length(noTime) == 0) {
    stop(
      "File did not contain a time column as proposed by 'time' argument."
    )
  }

  ## biological description data from measurement data
  descrEntries <- useData[, noDescription]
  restLong <- unlist(useData[, -noDescription])

  ## Create output data frame
  newData <- data.frame(
    descrEntries,
    name = rep(allNames[-noDescription], each = dim(useData)[1]),
    value = restLong
  )

  ## Remove missing items
  newData <- newData[!is.nan(newData$value), ]
  newData <- newData[!is.na(newData$value), ]


  colnames(newData)[noTime] <- "time"

  return(newData)
}



# plotIt() ---------------------------------------------------------

#' All-in-one plot function for blotIt
#'
#' Takes the output of \link{alignReplicates} and generates graphs. Which data will be
#' plotted can then be specified separately.
#'
#' @param inputList \code{inputList} file as produced by \link{alignReplicates}, a list
#' of data.frames.
#' @param plotPoints String to specify which data set should be plotted in form
#' of points with corresponding error bars. It must be one of
#' \code{c("original", "scaled", "prediction", "aligned")}.
#' @param plotLine Same as above but with a line and error band.
#' @param spline Logical, if set to \code{TRUE}, what is specified as
#' \code{plotLine} will be plotted as a smooth spline instead of straight lines
#' between points.
#' @param scales String passed as \code{scales} argument to \link{facet_wrap}.
#'
#' @param alignZeros Logical, if \code{TRUE}, the zero ticks are aligned
#' between the facets.
#' @param plotCaption Logical, if \code{TRUE}, a caption describing the plotted
#' data is added to the plot.
#' @param ncol Numerical passed as \code{ncol} argument to
#' \link{facet_wrap}.
#'
#' @param useColors vector of custom color values as taken by the \code{values}
#' argument in the \link{scale_color_manual} method for \code{ggplot} objects.
#'
# @param duplicateZeroPoints Logical, if set to \code{TRUE} all zero time
# points are assumed to belong to the first condition. E.g. when the different
# conditions consist of treatments added at time zero. Default is \code{FALSE}.
#'
#' @param useOrder Optional list of target names in the custom order that will
#' be used for faceting.
#'
#' @param plotScaleX character, defining the scale of the x axis
#'
#' @param plotScaleY character, defining the scale of the y axis
#'
#' @param doseResponse Logical, indicates if the plot should be dose response
#'
#' @param doseValueName name of the column that should be used for the x axis in
#' case of a dose response plot. The default is 'dose'
#'
#' @param labelX Optional, value passed to \code{xlab} parameter of \link{ggplot}
#' for the x-axis. Default is \code{NULL} leading to 'Time' or 'Dose',
#' respectively.
#'
#' @param labelY Optional, value passed to \code{ylab} parameter of \link{ggplot}
#' for the y-axis. Default is \code{NULL} leading to 'Signal'.
#'
#' @param ... Logical expression used for subsetting the data frames, e.g.
#' \code{name == "pERK1" & time < 60}.
#'
#' @FacetLabels String, either 'simple' or 'full'. Results in the value of
#' the facets being printed either separated by underscores ('simple') or
#' with the respective facet names ('full')
#'
#' \describe{
#' To reproduce the known function \code{plot1}, \code{plot2} and \code{plot3},
#' use:
#' \item{plot1}{
#' \code{plotPoints} = 'original', \code{plotLine} = 'prediction'
#' }
#' \item{plot2}{
#' \code{plotPoints} = 'scaled', \code{plotLine} = 'aligned'
#' }
#' \item{plot3}{
#' \code{plotPoints} = 'aligned', \code{plotLine} = 'aligned'
#' }
#' }
#'
#' @import ggplot2 data.table
#'
#' @return ggplot object
#'
#' @export
#' @author Severin Bang and Svenja Kemmer

plotIt <- function(
    inputList,
    ...,
    plotPoints = "aligned",
    plotLine = "aligned",
    spline = FALSE,
    scales = "free",
    alignZeros = TRUE,
    plotCaption = TRUE,
    ncol = NULL,
    useColors = NULL,
    #duplicateZeroPoints = FALSE,
    useOrder = NULL,
    plotScaleY = NULL,
    plotScaleX = NULL,
    doseResponse = FALSE,
    doseValueName = "dose",
    labelX = NULL,
    labelY = NULL,
    FacetLabels = c("simple", "full")[1]
) {
  if (!plotPoints %in% c("original", "scaled", "prediction", "aligned") |
      !plotLine %in% c("original", "scaled", "prediction", "aligned")) {
    stop(
      "\n\t'plotPoints' and 'plotLine' must each be one of
            c('original', 'scaled', 'prediction', 'aligned')\n"
    )
  }

  if (!(FacetLabels == "simple" | FacetLabels == "full")) {
    stop("'FacetLabels' must be either'simple' or 'full'")
  }

  ## change plotting order from default
  if (!is.null(useOrder)) {
    if (length(setdiff(levels(inputList[[1]]$name), useOrder)) != 0) {
      stop("useOrder doesn't contain all protein names.")
    } else {
      inputList$aligned$name <- factor(
        inputList$aligned$name,
        levels = useOrder
      )
      inputList$scaled$name <- factor(
        inputList$scaled$name,
        levels = useOrder
      )
      inputList$prediction$name <- factor(
        inputList$prediction$name,
        levels = useOrder
      )
      inputList$original$name <- factor(
        inputList$original$name,
        levels = useOrder
      )
    }
  }

  biological <- inputList$biological
  scaling <- inputList$scaling

  plotList <- inputList

  ## duplicate 0 values for all doses # not working at the moment!
  # if (duplicateZeroPoints) {
  #     for (ndat in 1) {
  #         dat <- plotList[[ndat]]
  #         subsetZeros <- copy(subset(dat, time == 0))
  #         myDoses <- setdiff(unique(dat$dose), 0)
  #         myZerosAdd <- NULL
  #         for (d in seq(1, length(myDoses))) {
  #             subsetZerosD <- copy(subsetZeros)
  #             subsetZerosD$dose <- myDoses[d]
  #             myZerosAdd <- rbind(myZerosAdd, subsetZerosD)
  #         }
  #         dat <- rbind(dat, myZerosAdd)
  #         plotList[[ndat]] <- dat
  #     }
  # }

  ## add columns containing the respective scaling and biological effects

  # aligned
  if (doseResponse == TRUE) {
    xValue <- doseValueName
  } else {
    xValue <- "time"
  }
  # * FacetLabels ----
  if(FacetLabels == "simple"){
  # * * FacetLabels - simple ----
  plotList$aligned$biological <- do.call(
    paste,
    c(
      plotList$aligned[
        ,
        biological[!(biological %in% c("name", xValue))],
        drop = FALSE
      ],
      list(sep="_")
    )
  )
  plotList$aligned$scaling <- NA

  ## scaled
  plotList$scaled$biological <- do.call(
    paste,
    c(
      inputList$scaled[
        ,
        biological[!(biological %in% c("name", xValue))],
        drop = FALSE
      ],
      list(sep="_")
    )
  )
  plotList$scaled$scaling <- do.call(
    paste,
    c(
      inputList$scaled[, scaling[scaling != "name"], drop = FALSE],
      list(sep="_")
    )
  )

  ## prediction
  plotList$prediction$biological <- do.call(
    paste,
    c(
      inputList$prediction[
        ,
        biological[!(biological %in% c("name", xValue))],
        drop = FALSE
      ],
      list(sep="_")
    )
  )
  plotList$prediction$scaling <- do.call(
    paste,
    c(
      inputList$prediction[, scaling[scaling != "name"], drop = FALSE],
      list(sep="_")
    )
  )

  ## original
  plotList$original$biological <- do.call(
    paste,
    c(
      inputList$original[
        ,
        biological[!(biological %in% c("name", xValue))],
        drop = FALSE
      ],
      list(sep="_")
    )
  )
  plotList$original$scaling <- do.call(
    paste,
    c(
      inputList$original[, scaling[scaling != "name"], drop = FALSE],
      list(sep="_")
    )
  )
  } else if (FacetLabels == "full") {
    # * * FacetLabels - full ----
    plotList$aligned$biological <- do.call(
      c,
      lapply(
        seq(nrow(plotList$aligned)),
        function(i) {
          paste0(
            lapply(
              biological[!(biological %in% c("name", xValue))],
              function(j) paste0(j, ": ", plotList$aligned[i,j])
            ),
            collapse = "\n"
          )
        }
      )
    )
    plotList$aligned$scaling <- NA

    ## scaled
    plotList$scaled$biological <- do.call(
      c,
      lapply(
        seq(nrow(plotList$scaled)),
        function(i) {
          paste0(
            lapply(
              biological[!(biological %in% c("name", xValue))],
              function(j) paste0(j, ": ", plotList$scaled[i,j])
            ),
            collapse = "\n"
          )
        }
      )
    )
    plotList$scaled$scaling <- do.call(
      c,
      lapply(
        seq(nrow(plotList$scaled)),
        function(i) {
          paste0(
            lapply(
              scaling[!(scaling %in% c("name"))],
              function(j) paste0(j, ": ", plotList$scaled[i,j])
            ),
            collapse = "\n"
          )
        }
      )
    )

    ## prediction
    plotList$prediction$biological <- do.call(
      c,
      lapply(
        seq(nrow(plotList$prediction)),
        function(i) {
          paste0(
            lapply(
              biological[!(biological %in% c("name", xValue))],
              function(j) paste0(j, ": ", plotList$prediction[i,j])
            ),
            collapse = "\n"
          )
        }
      )
    )
    plotList$prediction$scaling <- do.call(
      c,
      lapply(
        seq(nrow(plotList$prediction)),
        function(i) {
          paste0(
            lapply(
              scaling[!(scaling %in% c("name"))],
              function(j) paste0(j, ": ", plotList$prediction[i,j])
            ),
            collapse = "\n"
          )
        }
      )
    )

    ## original
    plotList$original$biological <- do.call(
      c,
      lapply(
        seq(nrow(plotList$original)),
        function(i) {
          paste0(
            lapply(
              biological[!(biological %in% c("name", xValue))],
              function(j) paste0(j, ": ", plotList$original[i,j])
            ),
            collapse = "\n"
          )
        }
      )
    )
    plotList$original$scaling <- do.call(
      c,
      lapply(
        seq(nrow(plotList$original)),
        function(i) {
          paste0(
            lapply(
              scaling[!(scaling %in% c("name"))],
              function(j) paste0(j, ": ", plotList$original[i,j])
            ),
            collapse = "\n"
          )
        }
      )
    )

  }

  plotListPoints <- plotList[[plotPoints]]
  plotListLine <- plotList[[plotLine]]

  plotListPoints <- subset(plotListPoints, ...)
  plotListLine <- subset(plotListLine, ...)

  ## build Caption
  usedErrors <- list(
    aligned = "Fisher Information",
    scaled = "Propergated error model to common scale",
    prediction = "Error model",
    original = "None"
  )

  usedData <- list(
    aligned = "Estimated true values",
    scaled = "Original data scaled to common scale",
    prediction = "Predictions from model evaluation on original scale",
    original = "Original data"
  )

  captionText <- paste0(
    "Datapoints: ", usedData[[plotPoints]], "\n",
    "Errorbars: ", usedErrors[[plotPoints]], "\n",
    "Line: ", usedData[[plotLine]], "\n",
    if (plotPoints != plotLine) {
      paste0("Errorband: ", usedErrors[[plotLine]], "\n")
    },
    "\n",
    "Date: ", Sys.Date()
  )

  ## we want to keep the x ticks!
  if (scales == "biological") {
    scales <- "free_x"
  }



  # * settings for dose response/time course --------------------------------

  if (doseResponse == TRUE) {
    Xlabel <-  "Dose"
    xVariable <- doseValueName
  } else {
    Xlabel <-  "Time"
    xVariable <- "time"
  }

  Ylabel <- "Signal"

  if (!is.null(labelX)){
    Xlabel <- labelX
  }

  if (!is.null(labelY)){
    Ylabel <- labelY
  }

  if (!is.null(plotScaleX)) {
    errWidth <- 0
  } else {
    errWidth <- max(as.numeric(plotListPoints[[xVariable]]))/50
  }

  plotListPoints[[xVariable]] <- as.numeric(plotListPoints[[xVariable]])
  plotListLine[[xVariable]] <- as.numeric(plotListLine[[xVariable]])


  # * plotting --------------------------------------------------------------
  if (plotPoints == "aligned" & plotLine == "aligned") {
    g <- ggplot(
      data = plotListPoints,
      aes_string(
        x = xVariable,
        y = "value",
        group = "biological",
        color = "biological",
        fill = "biological"
      )
    )
    g <- g + facet_wrap(~name, scales = scales, ncol = ncol, labeller = labeller(.default = label_both))
    if (is.null(useColors)) {
      # useColors <- scale_color_brewer()
      # # c(
      # # "#000000",
      # # "#C5000B",
      # # "#0084D1",
      # # "#579D1C",
      # # "#FF950E",
      # # "#4B1F6F",
      # # "#CC79A7",
      # # "#006400",
      # # "#F0E442",
      # # "#8B4513",
      # # rep("gray", 100)
      # # )
      # g <- g + scale_color_manual("Condition", values = useColors) +
      #     scale_fill_manual("Condition", values = useColors)
    } else {
      useColors <- c(useColors, rep("gray", 100))
      g <- g + scale_color_manual("Biological", values = useColors) +
        scale_fill_manual("Biological", values = useColors)
    }
  } else {
    g <- ggplot(
      data = plotListPoints,
      aes_string(
        x = xVariable,
        y = "value",
        group = "scaling",
        color = "scaling",
        fill = "scaling"
      )
    )
    g <- g + facet_wrap(
      ~ name * biological,
      scales = scales,
      ncol = ncol,
      labeller = labeller(.default = label_both)
    )
    if (is.null(useColors)) {
      # useColors <- scale_color_brewer()
      # # c(
      # # "#000000",
      # # "#C5000B",
      # # "#0084D1",
      # # "#579D1C",
      # # "#FF950E",
      # # "#4B1F6F",
      # # "#CC79A7",
      # # "#006400",
      # # "#F0E442",
      # # "#8B4513",
      # # rep("gray", 100)
      # # )
      # g <- g + scale_color_manual("Scaling", values = useColors) +
      #     scale_fill_manual("Scaling", values = useColors)
    } else {
      useColors <- c(useColors, rep("gray", 100))
      g <- g + scale_color_manual("Scaled", values = useColors) +
        scale_fill_manual("Scaled", values = useColors)
    }
  }


  g <- g + geom_point(data = plotListPoints, size = 2.5)
  g <- g + geom_line(data = plotListLine, size = 1)


  # * * plotPoints == original ----------------------------------------------
  if (plotPoints == "original") {
    if (plotLine != "original") {
      if (spline == TRUE) {
        g <- g + geom_smooth(
          data = plotListLine,
          se = FALSE,
          method = "lm",
          formula = y ~ poly(x, 3)
        )
      } else {
        g <- g + geom_ribbon(
          data = plotListLine,
          aes(
            ymin = lower, # value - sigma,
            ymax = upper, # value + sigma#,
            # fill = "grey",
            # color = "grey"
          ),
          alpha = 0.3,
          lty = 0
        )
      }
    }


    # * * plotPoints == prediction -------------------------------------------
  } else if (plotPoints == "prediction") {
    if (plotLine != "prediction") {
      g <- g + geom_errorbar(
        data = plotListPoints,
        aes(
          ymin = lower, # value - sigma,
          ymax = upper # value + sigma
        ),
        size = 0.5,
        width = errWidth,
        alpha = 0.5
      )
    }
    if (spline == TRUE) {
      g <- g + geom_smooth(
        data = plotListLine,
        se = FALSE,
        method = "lm",
        formula = y ~ poly(x, 3)
      )
    } else {
      g <- g + geom_ribbon(
        data = plotListLine,
        aes(
          ymin = lower, # value - sigma,
          ymax = upper, # value + sigma#,
          # fill = "grey",
          # color = "grey"
        ),
        alpha = 0.3,
        lty = 0
      )
    }


    # * * plotPoints == scaled ------------------------------------------------
  } else if (plotPoints == "scaled") {
    if (plotLine != "scaled") {
      g <- g + geom_errorbar(
        data = plotListPoints,
        aes(
          ymin = lower, # value - sigma,
          ymax = upper # value + sigma
        ),
        size = 0.5,
        width = errWidth,
        alpha = 0.5
      )
    }
    if (spline == TRUE) {
      g <- g + geom_smooth(
        data = plotListLine,
        se = FALSE,
        method = "lm",
        formula = y ~ poly(x, 3)
      )
    } else {
      g <- g + geom_ribbon(
        data = plotListLine,
        aes(
          ymin = lower, # value - sigma,
          ymax = upper, # value + sigma#,
          # fill = "grey",
          # color = "grey"
        ),
        alpha = 0.3,
        lty = 0
      )
    }

    #  * * plotPoints == aligned ----------------------------------------------
  } else if (plotPoints == "aligned") {
    if (plotLine != "aligned") {
      g <- g + geom_errorbar(
        data = plotListPoints,
        aes(
          ymin = lower, # value - sigma,
          ymax = upper # value + sigma
        ),
        size = 0.5,
        width = errWidth,
        alpha = 0.5
      )
    } else {
      if (spline == TRUE) {
        g <- g + geom_smooth(
          data = plotListLine,
          se = FALSE,
          method = "lm",
          formula = y ~ poly(x, 3)
        )
      } else {
        g <- g + geom_ribbon(
          data = plotListLine,
          aes(
            ymin = lower, # value - sigma,
            ymax = upper, # value + sigma#,
            # fill = "grey",
            # color = "grey"
          ),
          alpha = 0.3,
          lty = 0
        )
      }
    }
  }





  g <- g + theme_bw(base_size = 20) +
    theme(
      legend.position = "top",
      legend.key = element_blank(),
      strip.background = element_rect(color = NA, fill = NA),
      axis.line.x = element_line(size = 0.3, colour = "black"),
      axis.line.y = element_line(size = 0.3, colour = "black"),
      panel.grid.major.x = element_blank(),
      panel.grid.major.y = element_blank(),
      panel.grid.minor = element_blank(),
      panel.border = element_blank(),
      panel.background = element_blank(),
      plot.margin = unit(c(0, 0.5, 0.5, 0.5), "cm")
    )
  g <- g + xlab(paste0("\n",Xlabel)) + ylab(paste0(Ylabel,"\n"))

  if (alignZeros) {
    if (plotPoints != "original") {
      ## scale y-axes (let them start at same minimum determined by
      ## smallest value-sigma and end at individual ymax)
      plotListPoints <- as.data.table(plotListPoints)
      blankData <- plotListPoints[
        ,
        list(ymax = max(upper), ymin = min(lower)),
        by = c("name", "biological", "scaling")
      ]
      blankData[, ":="(ymin = min(ymin))] # same minimum for all proteins
      blankData[
        ,
        ":="(ymax = getMaxY(ymax)),
        by = c("name", "biological", "scaling")
      ] # protein specific maximum
      blankData <- melt(
        blankData,
        id.vars = c("name", "biological", "scaling"),
        measure.vars = c("ymax", "ymin"),
        value.name = "value"
      )
      blankData[, ":="(xVariable = 0, variable = NULL)]
      setnames(blankData, "xVariable", xVariable)
      g <- g + geom_blank(
        data = as.data.frame(blankData),
        aes_string(x = xVariable, y = "value")
      )
    }
  }


  if (plotCaption) {
    g <- g + labs(caption = captionText)
  }

  if (is.null(plotScaleY)) {
    if (inputList$outputScale != "linear") {
      g <- g + coord_trans(y = inputList$outputScale)
    }
  } else if (plotScaleY %in% c("log", "log2", "log10")) {
    g <- g + scale_y_continuous(trans = plotScaleY)
  }

  if (is.null(plotScaleX)) {
    if (inputList$outputScale != "linear") {
      g <- g + coord_trans(x = inputList$outputScale)
    }
  } else if (plotScaleX == "pseudoLog10") {
    g <- g + scale_x_continuous(trans=scales::pseudo_log_trans(base = 10))
  } else if (plotScaleX %in% c("log", "log2", "log10")) {
    g <- g + scale_x_continuous(trans = plotScaleX)
  }


  return(g)
}


# llrTest() --------------------------------------------------------------

#' Method for hypothesis testing
#'
#' Two outputs of \link{alignReplicates} can be tested as nested hypothesis. This can
#' be used to test if e.g. buffer material influence can be neglected or a
#' specific measurement point is an outlier.
#'
#' @param H0 output of \link{alignReplicates} obeying the null hypothesis. A special
#' case of \code{H1}.
#' @param H1 output of \link{alignReplicates}, the general case
#'
#' @return list with the log-likelihood ratio, statistical information and the
#' numerical p-value calculated by the evaluating the chi-squared distribution
#' at the present log-likelihood ratio with the current degrees of freedom.
#'
#' @examples
#' ## load provided example data file
#' lrrDataPath <- system.file(
#'     "extdata", "exampleLlrTest.csv",
#'     package = "blotIt"
#' )
#'
#' ## import data
#' llrData <- readWide(
#'     file = lrrDataPath,
#'     description = seq(1, 4),
#'     sep = ",",
#'     dec = "."
#' )
#'
#' ## generate H0: the buffer column is not named as a biological effect e.g.
#' ## not considered as a biological different condition
#' H0 <- alignReplicates(
#'     data = llrData,
#'     model = "yi / sj",
#'     errorModel = "value * sigmaR",
#'     biological = yi ~ name + time + stimmulus,
#'     scaling = sj ~ name + ID,
#'     error = sigmaR ~ name + 1,
#'     fitLogscale = FALSE,
#'     normalize = TRUE,
#'     averageTechRep = FALSE,
#'     verbose = FALSE,
#'     normalizeInput = TRUE
#' )
#'
#' ## generate H1: here the buffer column is named in the biological parameter
#' ## therefore different entries are considered as biologically different
#' H1 <- alignReplicates(
#'     data = llrData,
#'     model = "yi / sj",
#'     errorModel = "value * sigmaR",
#'     biological = yi ~ name + time + stimmulus + buffer,
#'     scaling = sj ~ name + ID,
#'     error = sigmaR ~ name + 1,
#'     fitLogscale = FALSE,
#'     normalize = TRUE,
#'     averageTechRep = FALSE,
#'     verbose = FALSE,
#'     normalizeInput = TRUE
#' )
#'
#' ## perform test
#' llrTest(H0, H1)
#' @export
#'
llrTest <- function(H0, H1, check = TRUE) {
  biological0 <- union(
    H0$biological[!(H0$biological %in% c("name", "time"))],
    "1"
  )
  biological1 <- union(
    H1$biological[!(H1$biological %in% c("name", "time"))],
    "1"
  )

  scaling0 <- union(H0$scaling[H0$scaling != "name"], "1")
  scaling1 <- union(H1$scaling[H1$scaling != "name"], "1")

  error0 <- union(H0$error[H0$error != "name"], "1")
  error1 <- union(H1$scaling[H1$scaling != "name"], "1")

  if (check) {
    if (
      !all(biological0 %in% biological1) |
      !all(scaling0 %in% scaling1) | !all(error0 %in% error1)
    ) {
      stop("H0 is not a special case of H1.")
    }
  }


  value0 <- attr(H0$parameter, "value")
  value1 <- attr(H1$parameter, "value")
  df0 <- attr(H0$parameter, "df")
  df1 <- attr(H1$parameter, "df")

  list(
    llr = value0 - value1,
    statistic = paste0(
      "chisquare with ", df0 - df1, " degrees of freedom."
    ),
    p.value = pchisq(value0 - value1, df = df0 - df1, lower.tail = FALSE)
  )
}
JetiLab/blotIt documentation built on June 19, 2024, 7:18 a.m.