Description Usage Arguments Value Examples
This function uses specified criteria to select the optimal subset from a list of subsets, given design matrix X and observation y.
1 2 | varSelection(candidates, dat, criteria = c("BC"), penaltyBC = NULL,
adaptiveBC = FALSE, methodPI = "BC")
|
candidates |
List of vectors each representing the indices of significant variables |
dat |
List containing design matrix X and observation y |
criteria |
Vector of strings ('GIC2, GICn, Cp, AIC, BIC, BC') indicating criteria to use |
penaltyBC |
Vector of non-default penalty values in using BC, default to NULL so that only the suggested value n^(1/3) will be considered |
adaptiveBC |
Boolean indicating whether to use adaptive BC, default to FALSE so that only the suggested value n^(1/3) will be considered |
methodPI |
String ('BC', 'Drop', or 'Both') indicating the method to calculate BC, default to 'BC' |
List (cri_opt) of indices of candidate subsets, each corresponding to a method (cri_name), along with parametricness index PI for each type of BC
1 2 3 4 5 6 7 8 9 10 11 12 13 | n <- 150
p <- 200
X <- genDesignMat(n,p,0.5)
beta <- rep(0, p)
beta[c(99,199)] = c(10, 5)
mu <- X %*% as.matrix(beta, ncol=1)
y <- mu + stats::rnorm(n)
candidates <- vector('list', 0)
candidates[[1]] <- c(1, 99)
candidates[[2]] <- c(99, 199)
candidates[[3]] <- c(1, 99, 199)
dat <- list(X = X, y= y)
res <- varSelection(candidates, dat)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.