est_sig: Estimate Sigma in Multivariate Case

Description Usage Arguments Value Examples

View source: R/em_bivariado_multivariado.R

Description

The function to calculate the estimate of the covariances, also for multivariate case.

Usage

1
est_sig(data, exx, ex, updmu)

Arguments

data

Data in the form of multivariate grouped data.

exx

The list of second moments matrices.

ex

Matrix with the references of the first moments.

updmu

The estimate mu.

Value

returns a matrix with the variance and covariance estimates.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
library(MASS)
library(em.univ)
library(tmvtnorm)

simulateddata = em.univ::mult_simul(mm = c(68,68),
                          ss = base::matrix(c(3,2,2,6),2,2) ,
                          n_data_sets = 1,
                          breaks_x = c(-Inf,64,65,66,67,68,69,70,71,72,Inf),
                          breaks_y = c(-Inf,64.2,65.2,66.2,
                                       67.2,68.2,69.2,70.2,
                                       71.2,72.2,Inf),
                          lower_x = base::rep(c(-Inf,64,65,66,67,
                                          68,69,70,71,72),10),
                          lower_y = c(base::rep(-Inf,10),
                                      base::rep(64.2,10),
                                      base::rep(65.2,10),
                                      base::rep(66.2,10),
                                      base::rep(67.2,10),
                                      base::rep(68.2,10),
                                      base::rep(69.2,10),
                                      base::rep(70.2,10),
                                      base::rep(71.2,10),
                                      base::rep(72.2,10)),
                          upper_x = base::rep(c(64,65,66,67,68,69,70,
                                                71,72,Inf),10),
                          upper_y = c(base::rep(64.2,10),
                                      base::rep(65.2,10),
                                      base::rep(66.2,10),
                                      base::rep(67.2,10),
                                      base::rep(68.2,10),
                                      base::rep(69.2,10),
                                      base::rep(70.2,10),
                                      base::rep(71.2,10),
                                      base::rep(72,2,10),
                                      base::rep(Inf,10))
)

mu2<- c(67,67)
sigma2<- base::matrix(c(3.1,2.2,2.2,4.3),2,2)


exi<- em.univ::mexi(data=simulateddata[,,1],
           mu=mu2,
           sigma=sigma2)

ss1<- em.univ::mcovxi(data=simulateddata[,,1],
             mu=mu2,
             sigma=sigma2)

exx<- em.univ::exxest(data=simulateddata[,,1],
             exi=exi,
             ss1=ss1)

updmu <- em.univ::mem(data=simulateddata[,,1],
             exi=exi)

out<- em.univ::est_sig(data=simulateddata[,,1],
            exx=exx,
            ex=exi,
            updmu = updmu)


out

JoaoPedro2536/univ.em documentation built on Dec. 18, 2021, 1:38 a.m.