Description Usage Arguments Value Examples
This is the maximization step of the mcem algorithm (M-step).
1 |
data |
Contingency table, matrix format of three columns, first column lower limits, second column upper limits, and third column observed frequencies. |
theta_init |
The initial values of the parameters, for mu and sigma. Vector with two values. |
maxit |
The maximum number of iteration of the EM algorithm. |
tol1 |
A number, the stopping criteria for updating mu. |
tol2 |
A number, the stopping criteria for updating sigma. |
This is the maximization step of the mcem algorithm (M-step) that has defined it using the function E-Step for mean estimate and variance estimate. Returns the estimates for mean (mu) and sigma (variance).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | library(em.univ)
simdataaaa <- em.univ::univ_simul(ncol_matrix=1,
n=50,
nclass = 10,
mean = 68,
sd = 1.80,
fr_breaks=c(62,64,66,68,70,72,74,76,78))
outputmcem2 <- base::list()
outputmcem2[[1]] <- em.univ::mcem(data=simdataaaa$simul_data[,,1],
theta_init=c(67,2),
maxit = 1000,tol1=1e-2,tol2=1e-3)
outputmcem2
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.