mult_simul: Simulated Data Multivariated Case

Description Usage Arguments Value Examples

View source: R/em_bivariado_multivariado.R

Description

The function stimulates group data for the multivariate case.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
mult_simul(
  mm = c(68, 68),
  ss = base::matrix(c(3, 2, 2, 6), 2, 2),
  ssdata = array(base::rep(0, 1000 * 2 * 30), c(1000, 2, 30)),
  n_data_sets = 30,
  breaks_x = c(-Inf, 64, 65, 66, 67, 68, 69, 70, 71, 72, Inf),
  breaks_y = c(-Inf, 64.2, 65.2, 66.2, 67.2, 68.2, 69.2, 70.2, 71.2, 72.2, Inf),
  lower_x = base::rep(c(-Inf, 64, 65, 66, 67, 68, 69, 70, 71, 72), 10),
  lower_y = c(base::rep(-Inf, 10), base::rep(64.2, 10), base::rep(65.2, 10),
    base::rep(66.2, 10), base::rep(67.2, 10), base::rep(68.2, 10), base::rep(69.2, 10),
    base::rep(70.2, 10), base::rep(71.2, 10), base::rep(72.2, 10)),
  upper_x = base::rep(c(64, 65, 66, 67, 68, 69, 70, 71, 72, Inf), 10),
  upper_y = c(base::rep(64.2, 10), base::rep(65.2, 10), base::rep(66.2, 10),
    base::rep(67.2, 10), base::rep(68.2, 10), base::rep(69.2, 10), base::rep(70.2, 10),
    base::rep(71.2, 10), base::rep(72, 2, 10), base::rep(Inf, 10))
)

Arguments

mm

The vector of mu that we want to simulate from.

ss

The covariance matrix for the simulation.

n_data_sets

Integer, representa o numero de data sets a serem simulados.

breaks_x

Vector of values, represents the intervals that x belongs to.

breaks_y

Vector of values, represents the intervals that y belongs to.

lower_x

Vector of values, the lower bounds of x.

lower_y

Vector of values, the lower bounds of y.

upper_x

Vector of values, the upper bounds of x.

upper_y

Vector of values, the upper bounds of y.

Value

Return a list where each element is a simulation of multivariate data.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
library(MASS)
library(em.univ)
library(tmvtnorm)

simulateddata = em.univ::mult_simul(mm = c(68,68),
                          ss = base::matrix(c(3,2,2,6),2,2) ,
                          n_data_sets = 1,
                          breaks_x = c(-Inf,64,65,66,67,68,69,70,71,72,Inf),
                          breaks_y = c(-Inf,64.2,65.2,66.2,
                                       67.2,68.2,69.2,70.2,
                                       71.2,72.2,Inf),
                          lower_x = base::rep(c(-Inf,64,65,66,67,
                                          68,69,70,71,72),10),
                          lower_y = c(base::rep(-Inf,10),
                                      base::rep(64.2,10),
                                      base::rep(65.2,10),
                                      base::rep(66.2,10),
                                      base::rep(67.2,10),
                                      base::rep(68.2,10),
                                      base::rep(69.2,10),
                                      base::rep(70.2,10),
                                      base::rep(71.2,10),
                                      base::rep(72.2,10)),
                          upper_x = base::rep(c(64,65,66,67,68,69,70,
                                                71,72,Inf),10),
                          upper_y = c(base::rep(64.2,10),
                                      base::rep(65.2,10),
                                      base::rep(66.2,10),
                                      base::rep(67.2,10),
                                      base::rep(68.2,10),
                                      base::rep(69.2,10),
                                      base::rep(70.2,10),
                                      base::rep(71.2,10),
                                      base::rep(72,2,10),
                                      base::rep(Inf,10))
)


simulateddata

JoaoPedro2536/univ.em documentation built on Dec. 18, 2021, 1:38 a.m.