mcovxi: Mcov - XI E-Step For Variance Estimate

Description Usage Arguments Value Examples

View source: R/em_bivariado_multivariado.R

Description

The function to find the covariance matrices using the current theta of the truncated multivariate normal distributions for the rectangles which will be used to calculate the estimate of the covariance matrix.

Usage

1

Arguments

data

Data in the form of multivariate grouped data.

mu

Mean vector.

sigma

Covariance matrix

Value

returns a list containing in each item a variation and estimated covariance matrix.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
library(MASS)
library(em.univ)
library(tmvtnorm)

simulateddata = em.univ::mult_simul(mm = c(68,68),
                          ss = base::matrix(c(3,2,2,6),2,2) ,
                          n_data_sets = 1,
                          breaks_x = c(-Inf,64,65,66,67,68,69,70,71,72,Inf),
                          breaks_y = c(-Inf,64.2,65.2,66.2,
                                       67.2,68.2,69.2,70.2,
                                       71.2,72.2,Inf),
                          lower_x = base::rep(c(-Inf,64,65,66,67,
                                          68,69,70,71,72),10),
                          lower_y = c(base::rep(-Inf,10),
                                      base::rep(64.2,10),
                                      base::rep(65.2,10),
                                      base::rep(66.2,10),
                                      base::rep(67.2,10),
                                      base::rep(68.2,10),
                                      base::rep(69.2,10),
                                      base::rep(70.2,10),
                                      base::rep(71.2,10),
                                      base::rep(72.2,10)),
                          upper_x = base::rep(c(64,65,66,67,68,69,70,
                                                71,72,Inf),10),
                          upper_y = c(base::rep(64.2,10),
                                      base::rep(65.2,10),
                                      base::rep(66.2,10),
                                      base::rep(67.2,10),
                                      base::rep(68.2,10),
                                      base::rep(69.2,10),
                                      base::rep(70.2,10),
                                      base::rep(71.2,10),
                                      base::rep(72,2,10),
                                      base::rep(Inf,10))
)


mu2<- c(67,67)
sigma2<- base::matrix(c(3.1,2.2,2.2,4.3),2,2)


out<- em.univ::mcovxi(data = simulateddata[,,1],
             mu = mu2,
             sigma = sigma2)

out

JoaoPedro2536/univ.em documentation built on Dec. 18, 2021, 1:38 a.m.