Description Usage Arguments Value Examples
View source: R/em_bivariado_multivariado.R
The function to find the covariance matrices using the current theta of the truncated multivariate normal distributions for the rectangles which will be used to calculate the estimate of the covariance matrix.
1 |
data |
Data in the form of multivariate grouped data. |
mu |
Mean vector. |
sigma |
Covariance matrix |
returns a list containing in each item a variation and estimated covariance matrix.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | library(MASS)
library(em.univ)
library(tmvtnorm)
simulateddata = em.univ::mult_simul(mm = c(68,68),
ss = base::matrix(c(3,2,2,6),2,2) ,
n_data_sets = 1,
breaks_x = c(-Inf,64,65,66,67,68,69,70,71,72,Inf),
breaks_y = c(-Inf,64.2,65.2,66.2,
67.2,68.2,69.2,70.2,
71.2,72.2,Inf),
lower_x = base::rep(c(-Inf,64,65,66,67,
68,69,70,71,72),10),
lower_y = c(base::rep(-Inf,10),
base::rep(64.2,10),
base::rep(65.2,10),
base::rep(66.2,10),
base::rep(67.2,10),
base::rep(68.2,10),
base::rep(69.2,10),
base::rep(70.2,10),
base::rep(71.2,10),
base::rep(72.2,10)),
upper_x = base::rep(c(64,65,66,67,68,69,70,
71,72,Inf),10),
upper_y = c(base::rep(64.2,10),
base::rep(65.2,10),
base::rep(66.2,10),
base::rep(67.2,10),
base::rep(68.2,10),
base::rep(69.2,10),
base::rep(70.2,10),
base::rep(71.2,10),
base::rep(72,2,10),
base::rep(Inf,10))
)
mu2<- c(67,67)
sigma2<- base::matrix(c(3.1,2.2,2.2,4.3),2,2)
out<- em.univ::mcovxi(data = simulateddata[,,1],
mu = mu2,
sigma = sigma2)
out
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.