R package rnaseqviewer
is a toolkit for automated, systematic, and integrated RNA-seq differential expression analysis. It has functions for DEG analysis of single dataset and intergrated DEG analysis of multiple DEG analysis. deseq2
, edger
and ebseq
are functions for the DEG detection. Omics_overview
, DEG_overview
, and multiDEG_overview
are functions for systematic visualization of clustering and DEG analysis. vennd
, ORA
, AutoExtraction
and int_heatmap
are functions for intergrated functional analysis. It also has two useful functions, kmeansClustering
for k-means clustering analysis, and GeneSetConversion
for gene symbol conversion from human to mouse.
Count matrix file format must be tab-separated text file(.txt). The replication number is represented by the underbar. Do not use it for anything else.
install.packages("devtools")
devtools::install_github("Kan-E/rnaseqviewer")
#Functions for DEG analysis
deseq2(Row_count_matrix, #Row count data.txt (NOT normalized count data)
method = "BH") #BH, Qvalue, or IHW
edger(Row_count_matrix, #Row count data.txt (NOT normalized count data)
method = "BH") #BH, Qvalue, or IHW
ebseq(Row_count_matrix) #Row count data.txt (NOT normalized count data)
#Function for clustering analysis
Omics_overview(Count_matrix, #normalized count data.txt
heatmap = TRUE) #In the case of FALSE, heatmap not shown
#Functions for visualization of DEG analysis
DEG_overview(Count_matrix, #normalized count data.txt
DEG_result, #result data of EBseq (or DEseq2).txt
Species = NULL, #human or mouse (for enrichment analysis)
fdr = 0.05, fc = 2, basemean = 0) #fdr ,fold change, and basemean threshold
multiDEG_overview(Normalized_count_matrix, #normalized count data.txt
EBseq_result, #result data of EBseq.txt
EBseq_condmeans, #result data of EBseq.txt"
Species = NULL, #human or mouse (for enrichment analysis)
fdr = 0.05, fc = 2, basemeam = 0) #fdr ,fold change, and basemean threshold
#Functions for integrated analysis
#venn diagram analysis
vennd(gene_list_dir) #directory including gene list txt files (up to 7 files)
#Enrichment analysis
ORA(gene_list_dir, #directory including gene list txt files
Species = "human", #human or mouse
color = "qvalue")
#Boxplot and heatmap
AutoExtraction(Count_matrix, #normalized count data.txt
Gene_set_dir) #directory including gene set txt files
#Integration of multiple count matrix files
int_heatmap(Count_matrix_dir, #Directory including normalized count matrix txt files
Gene_set, #gene set txt file
pre_zscoring = T) #option for zscoring before integration of data sets
#Other functions
kmeansClustering(Count_matrix, #normalized count data.txt
Species = NULL, #Species for enrichment analysis
km, #number of k-means clustering
km_repeats = 10000, #number of k-means runs to get a consensus k-means clustering
basemean =0 ) #basemean threshold
GeneSetConversion(Gene_set_dir) #directory including gene set txt files
EBSeq (for ebseq) - Ning Leng and Christina Kendziorski (2020). EBSeq: An R package for gene and isoform differential expression analysis of RNA-seq data. R package version 1.30.0.
DESeq2 (for deseq2) - Love, M.I., Huber, W., Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biology 15(12):550 (2014)
edgeR (for edger) - Robinson MD, McCarthy DJ and Smyth GK (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140
IHW, Independent hypothesis weighting, and qvalue (for fdr control method of deseq2 and edger) - Nikolaos Ignatiadis, Bernd Klaus, Judith Zaugg and Wolfgang Huber (2016): Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods 13:577, doi: 10.1038/nmeth.3885 - John D. Storey, Andrew J. Bass, Alan Dabney and David Robinson (2021). qvalue: Q-value estimation for false discovery rate control. R package version 2.26.0. http://github.com/jdstorey/qvalue
ggdendro (for dendrograms) - Andrie de Vries and Brian D. Ripley (2020). ggdendro: Create Dendrograms and Tree Diagrams Using 'ggplot2'. R package version 0.1.22. https://CRAN.R-project.org/package=ggdendro
clusterProfiler and DOSE (for enrichment analysis) - T Wu, E Hu, S Xu, M Chen, P Guo, Z Dai, T Feng, L Zhou, W Tang, L Zhan, X Fu, S Liu, X Bo, and G Yu. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation. 2021, 2(3):100141 - Guangchuang Yu, Li-Gen Wang, Guang-Rong Yan, Qing-Yu He. DOSE: an R/Bioconductor package for Disease Ontology Semantic and Enrichment analysis. Bioinformatics 2015 31(4):608-609
AnnotationDbi, org.Hs.eg.db and org.Mm.eg.db (for genome wide annotation) - Hervé Pagès, Marc Carlson, Seth Falcon and Nianhua Li (2020). AnnotationDbi: Manipulation of SQLite-based annotations in Bioconductor. R package version 1.52.0. https://bioconductor.org/packages/AnnotationDbi - Marc Carlson (2020). org.Hs.eg.db: Genome wide annotation for Human. R package version 3.12.0. - Marc Carlson (2020). org.Mm.eg.db: Genome wide annotation for Mouse. R package version 3.12.0.
genefilter (for z-score normalization) - R. Gentleman, V. Carey, W. Huber and F. Hahne (2021). genefilter: methods for filtering genes from high-throughput experiments. R package version 1.72.1.
ComplexHeatmap (for heatmap and k-means clustering) - Gu, Z. (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics.
ggplot2 and ggpubr (for boxplot and scater plot) - H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. - Alboukadel Kassambara (2020). ggpubr: 'ggplot2' Based Publication Ready Plots. R package version 0.4.0. https://CRAN.R-project.org/package=ggpubr
venn (for venn diagram analysis) - Adrian Dusa (2021). venn: Draw Venn Diagrams. R package version 1.10. https://CRAN.R-project.org/package=venn
BioMart (for conversion of human gene symbol to mouse gene symbol) - Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Steffen Durinck, Paul T. Spellman, Ewan Birney and Wolfgang Huber, Nature Protocols 4, 1184-1191 (2009).
dplyr and tidyr (for data manipulation) - Hadley Wickham, Romain François, Lionel Henry and Kirill Müller (2021). dplyr: A Grammar of Data Manipulation. R package version 1.0.7. https://CRAN.R-project.org/package=dplyr - Hadley Wickham (2021). tidyr: Tidy Messy Data. R package version 1.1.3. https://CRAN.R-project.org/package=tidyr
Kan Etoh kaneto@kumamoto-u.ac.jp
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.