| breederInfo | R Documentation |
breederInfo object store specific information of one breeder.
breederName[character] name of this breeder
simInfo[simInfo class] Simulation information (see:simInfo)
specie[specie class] Specie of the SNPs (see:specie)
lociInfoFB[list] information about the individuals haplotypes' SNPs available for breeder
traitInfoFB[list] Specific information of traits available for breeder
popNameBase[character] base of population's name.
populationsFB[list] A list of populationFb objects available for breeders
crossInfoList[list] A list of crossInfo objects
generation[list] current generation No. in the breeder
calculateGRMBase[logical] calculate genomic relationship matrix (GRM) for each population or not
methodsGRMBase[character] default methods to calculate GRM
calcEpistasisBase[logical] when additive / dominance GRM has already been calulated, whether or not calculate epistatic GRM
estimatedGVByGRMInfo[list] A list of information on estimated GVs using GRM
estimatedMrkEffInfo[list] A list of information on estimated marker effects
estimatedGVByMLRInfo[list] A list of information on estimated GVs using MLR (multiple linear regression)
multiTraitsAsEnvs[logical] Treat multiple traits as multiple environments or not
includeIntercept[logical] Include intercept information when estimating genotypic values by replication
verbose[boolean] display information
populationFB[populationFB class] R6 class representing population for breeder
new()Create a new breederInfo object.
breederInfo$new( breederName = "Undefined", bsInfo, mrkNames = NULL, initGenotyping = TRUE, initGenotypedIndNames = NULL, mafThres = 0.05, heteroThres = 1, calculateGRMBase = TRUE, methodsGRMBase = "addNOIA", calcEpistasisBase = FALSE, multiTraitsAsEnvs = FALSE, includeIntercept = TRUE, verbose = TRUE )
breederName[character] name of this breeder
bsInfo[bsInfo class] breeding scheme info (whichever generation is OK, but it will use only 1st population) (see:bsInfo)
mrkNames[character] marker names
initGenotyping[logical] obtain marker genotype for initial population or not
initGenotypedIndNames[character] individual names that you want to genotype in initial population
mafThres[numeric] threshold for removing markers with maf < mafThres
heteroThres[numeric] threshold for removing markers with heteroRate >= heteroThres
calculateGRMBase[logical] calculate genomic relationship matrix (GRM) for each population or not
methodsGRMBase[character] default methods to calculate GRM
calcEpistasisBase[logical] when additive / dominance GRM has already been calulated, whether or not calculate epistatic GRM
multiTraitsAsEnvs[logical] Treat multiple traits as multiple environments or not
includeIntercept[logical] Include intercept information when estimating genotypic values by replication
verbose[logical] Display info (optional)
A new 'breederInfo' object.
### create simulation information
mySimInfo <- simInfo$new(simName = "Simulation Example",
simGeno = TRUE,
simPheno = TRUE,
nSimGeno = 1,
nSimPheno = 3,
nCoreMax = 4,
nCorePerGeno = 1,
nCorePerPheno = 3,
saveDataFileName = NULL)
### create specie information
mySpec <- specie$new(nChr = 3,
lChr = c(100, 150, 200),
specName = "Example 1",
ploidy = 2,
mutRate = 10^-8,
recombRate = 10^-7,
recombRateOneVal = FALSE,
chrNames = c("C1", "C2", "C3"),
nLoci = 100,
effPopSize = 100,
simInfo = mySimInfo,
verbose = TRUE)
print(mySpec)
getNewPopulation()get information on new population
breederInfo$getNewPopulation( bsInfo, generationNew = NULL, genotyping = TRUE, genotypedIndNames = NULL )
bsInfo[bsInfo class] a bsInfo class object
generationNew[numeric] a generation of new population
genotyping[logical] Whether or not you want to genotype
genotypedIndNames[character] individual names that you want to genotype
phenotyper()get phenotypic values on current population
breederInfo$phenotyper( bsInfo, generationOfInterest = NULL, nRep = 1, phenotypedIndNames = NULL, estimateGV = TRUE, estimatedGVMethod = "lme4" )
bsInfo[bsInfo class] a bsInfo class object
generationOfInteresta generation where you want to obtain phenotypic values from population
nRep[numeric] Replication of the field trial (common to all traits)
phenotypedIndNames[character] individual names that you want to phenotype
estimateGV[logical] estimate genotypic values by replication or not
estimatedGVMethod[character] We offer 'lme4' and 'mean'. 'lme4' is recommended.
multiTraitsAsEnvs[logical] Treat multiple traits as multiple environments or not
estimateGVByGRM()estimate genotypic values based on GBLUP
breederInfo$estimateGVByGRM( trainingPop = NULL, testingPop = NULL, testingIndNames = NULL, methodsGRMFP = "addNOIA", bayesian = FALSE, multiTrait = FALSE, nIter = 10000, burnIn = 2000, thin = 5 )
trainingPop[character / numeric] training population names or No.s (not generations!!)
testingPop[character / numeric] testing population names or No.s (not generations!!)
testingIndNames[character] names of testing individuals
methodsGRMFP[character] methods for calculating GRM for prediction
bayesian[logical] use bayesian model (BGLR) or not (RAINBOWR) for solving mixed-effects model
multiTrait[logical] use multiple-trait model for estimation of genotypic values
nIter[numeric] the number of iterations
burnIn[numeric] the number of burn-in
thin[numeric] the number of thinning
estimateMrkEff()estimate marker effects based on multiple linear regression (machine learning)
breederInfo$estimateMrkEff( trainingPop = NULL, trainingIndNames = NULL, methodMLR = "Ridge", multiTrait = FALSE, alpha = 0.5, nIter = 10000, burnIn = 2000, thin = 5, bayesian = FALSE, alphaMarker = 0.5, sizeMrkMin = 2, sizeMrkMax = 12 )
trainingPop[character / numeric] training population names or No.s (not generations!!)
trainingIndNames[character] names of training individuals
methodMLR[character] methods for estimating marker effects. The following methods are offered:
"Ridge", "LASSO", "ElasticNet", "RR-BLUP", "GBLUP", "BayesA" (uni-trait), "BayesB" (uni-trait), "BayesC" (uni-trait), "BRR", "BL" (uni-trait), "SpikeSlab" (multi-trait)
multiTrait[logical] use multiple-trait model for estimation of marker effects or not
alpha[numeric] the elastic net mixing parameter, with 0 \leq \alpha \leq 1.
The penalty is defined as
\frac {1 - \alpha} { 2 } || \beta || _ 2 ^ 2 + \alpha || \beta || _ 1
'alpha = 1' is the lasso penalty, and 'alpha = 0' the ridge penalty.
nIter[numeric] the number of iterations
burnIn[numeric] the number of burn-in
thin[numeric] the number of thinning
bayesian[logical] use bayesian model (BGLR) or not (RAINBOWR) for solving mixed-effects model (only when ‘methodMLR = ’GBLUP'', this argument is valid.)
alphaMarker[numeric] for plot: transparency for markers, see plot_ly
sizeMrkMin[numeric] for plot: size for marker with minimum estimated effect
sizeMrkMax[numeric] for plot: size for marker with maximum estimated effect
estimateGVByMLR()estimate genotypic values based on GBLUP
breederInfo$estimateGVByMLR( trainingPop = NULL, trainingIndNames = NULL, testingPop = NULL, testingIndNames = NULL, methodMLR = "Ridge", multiTrait = FALSE, alpha = 0.5, nIter = 10000, burnIn = 2000, thin = 5, bayesian = FALSE )
trainingPop[character / numeric] training population names or No.s (not generations!!)
trainingIndNames[character] names of training individuals
testingPop[character / numeric] testing population names or No.s (not generations!!)
testingIndNames[character] names of testing individuals
methodMLR[character] methods for estimating marker effects. The following methods are offered:
"Ridge", "LASSO", "ElasticNet", "RR-BLUP", "GBLUP", "BayesA" (uni-trait), "BayesB" (uni-trait), "BayesC" (uni-trait), "BRR", "BL" (uni-trait), "SpikeSlab" (multi-trait)
multiTrait[logical] use multiple-trait model for estimation of marker effects or not
alpha[numeric] the elastic net mixing parameter, with 0 \leq \alpha \leq 1.
The penalty is defined as
\frac {1 - \alpha} { 2 } || \beta || _ 2 ^ 2 + \alpha || \beta || _ 1
'alpha = 1' is the lasso penalty, and 'alpha = 0' the ridge penalty.
nIter[numeric] the number of iterations
burnIn[numeric] the number of burn-in
thin[numeric] the number of thinning
bayesian[logical] use bayesian model (BGLR) or not (RAINBOWR) for solving mixed-effects model (only when ‘methodMLR = ’GBLUP'', this argument is valid.)
overGeneration()Display informations about the object
assemble populations over generation
breederInfo$overGeneration(targetPop = NULL)
targetPop[character / numeric] population names or No.s you want to assemble. If NULL, assemble all the populations
removeLatestPop()remove latest population
breederInfo$removeLatestPop()
removeInitialPop()remove initial population
breederInfo$removeInitialPop()
parentInd()search parents of an individual of interest
breederInfo$parentInd(indName)
indName[character] individual name of interest
lociEffects()search parents of an individual of interest
breederInfo$lociEffects(bsInfo, trainingPop = NULL, methodMLR = NULL)
bsInfo[bsInfo class] breeding scheme info (whichever generation is OK, but it will use only 1st population) (see:bsInfo)#'
trainingPop[character / numeric] training population names or No.s (not generations!!)
methodMLR[character] methods for estimating marker effects. The following methods are offered:
"Ridge", "LASSO", "ElasticNet", "RR-BLUP", "GBLUP", "BayesA" (uni-trait), "BayesB" (uni-trait), "BayesC" (uni-trait), "BRR", "BL" (uni-trait), "SpikeSlab" (multi-trait)
print()Display information about the object
breederInfo$print()
clone()The objects of this class are cloneable with this method.
breederInfo$clone(deep = FALSE)
deepWhether to make a deep clone.
## ------------------------------------------------
## Method `breederInfo$new`
## ------------------------------------------------
### create simulation information
mySimInfo <- simInfo$new(simName = "Simulation Example",
simGeno = TRUE,
simPheno = TRUE,
nSimGeno = 1,
nSimPheno = 3,
nCoreMax = 4,
nCorePerGeno = 1,
nCorePerPheno = 3,
saveDataFileName = NULL)
### create specie information
mySpec <- specie$new(nChr = 3,
lChr = c(100, 150, 200),
specName = "Example 1",
ploidy = 2,
mutRate = 10^-8,
recombRate = 10^-7,
recombRateOneVal = FALSE,
chrNames = c("C1", "C2", "C3"),
nLoci = 100,
effPopSize = 100,
simInfo = mySimInfo,
verbose = TRUE)
print(mySpec)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.