stoSOO | R Documentation |
stoSOO object store specific information on global optimization for stochastic functions given a finite number of budget (StoSOO).
parameter
[vector] Vector with length defining the dimensionality of the optimization problem. Providing actual values of par is not necessary (NAs are just fine).
paramLen
[numeric] Number of parameters
optimizeFunc
[function] Scalar function to be optimized, with first argument to be optimized over
lowerBound
[numeric] Vectors of lower bounds on the variables
upperBound
[numeric] Vectors of upper bounds on the variables
nIterOptimization
[numeric] Number of function evaluations allocated to optimization
nMaxEvalPerNode
[numeric] Maximum number of evaluations per leaf
maxDepth
[numeric] Maximum depth of the tree
nChildrenPerExpansion
[numeric] Number of children per expansion
confidenceParam
[numeric] Confidence parameter (see Valko et al., 2013)
maximize
[logical] If TRUE, performs maximization
optimizeType
[character] Either 'deterministic' for optimizing a deterministic function or 'stochastic' for a stochastic one
returnOptimalNodes
[numeric] When (how many iterations) to return (or save) the optimal nodes when optimizing hyper parameter by StoSOO
saveTreeNameBase
[character] Base name of the tree to be saved
whenToSaveTrees
[numeric] When (how many iterations) to save the tree in StoSOO
withCheck
[logical] Check arguments for 'node', 'layer', and 'tree' class or not
verbose
[logical] Display information
widthBase
[numeric] Base of width of the estimates of rewards
funcScale
[numeric] Scale for function to be optimized. If 'maximize = TRUE', 'funcScale = 1', and else 'funcScale = -1'.
maximizeFunc
[function] Function to be maximized given parameters scaled from 0 to 1.
currentTree
[tree class] 'tree' class object for the current status
optimalNodes
[list] List of optimal nodes ('node' class object) corresponding to 'returnOptimalNodes'
optimalNodeFinal
[node class] Optimal node ('node' class object) for the final tree
optimalParameter
[numeric] Optimal parameter estimated by StooSOO given a finite number of evaluations
optimalValue
[numeric] Optimal value estimated by StooSOO given a finite number of evaluations
new()
Create a new stoSOO object.
stoSOO$new( parameter, optimizeFunc, ..., lowerBound = NULL, upperBound = NULL, nIterOptimization = NULL, nMaxEvalPerNode = NULL, maxDepth = NULL, nChildrenPerExpansion = NULL, confidenceParam = NULL, maximize = NULL, optimizeType = NULL, returnOptimalNodes = NULL, saveTreeNameBase = NULL, whenToSaveTrees = NA, withCheck = FALSE, verbose = TRUE )
parameter
[vector] Vector with length defining the dimensionality of the optimization problem. Providing actual values of par is not necessary (NAs are just fine).
optimizeFunc
[function] Scalar function to be optimized, with first argument to be optimized over
...
[logical/numeric/character/etc...] Optional additional arguments to 'optimizeFunc'
lowerBound
[numeric] Vectors of lower bounds on the variables
upperBound
[numeric] Vectors of upper bounds on the variables
nIterOptimization
[numeric] Number of function evaluations allocated to optimization
nMaxEvalPerNode
[numeric] Maximum number of evaluations per leaf
maxDepth
[numeric] Maximum depth of the tree
nChildrenPerExpansion
[numeric] Number of children per expansion
confidenceParam
[numeric] Confidence parameter (see Valko et al., 2013)
maximize
[logical] If TRUE, performs maximization
optimizeType
[character] Either 'deterministic' for optimizing a deterministic function or 'stochastic' for a stochastic one
returnOptimalNodes
[numeric] When (how many iterations) to return (or save) the optimal nodes when optimizing hyper parameter by StoSOO
saveTreeNameBase
[character] Base name of the tree to be saved
whenToSaveTrees
[numeric] When (how many iterations) to save the tree in StoSOO
withCheck
[logical] Check arguments for 'node', 'layer', and 'tree' class or not
verbose
[logical] Display information
startOptimization()
start global optimization of stochastic function by StoSOO
stoSOO$startOptimization()
print()
Display information about the object
stoSOO$print()
clone()
The objects of this class are cloneable with this method.
stoSOO$clone(deep = FALSE)
deep
Whether to make a deep clone.
R. Munos (2011), Optimistic optimization of deterministic functions without the knowledge of its smoothness,
NIPS, 783-791.
M. Valko, A. Carpentier and R. Munos (2013), Stochastic Simultaneous Optimistic Optimization,
ICML, 19-27 http://hal.inria.fr/hal-00789606. Matlab code: https://team.inria.fr/sequel/software/StoSOO.
P. Preux, R. Munos, M. Valko (2014), Bandits attack function optimization, IEEE Congress on Evolutionary Computation (CEC), 2245-2252.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.