tree | R Documentation |
tree object store specific information on tree for StoSOO
xMinRoot
[numeric] Minimum value of the root node (cell) in the tree
xMaxRoot
[numeric] Maximum value of the root node (cell) in the tree
xRepresentativeRoot
[numeric] Representative value of the root node (cell) in the tree
paramLen
[numeric] Number of parameters
nMaxEvalPerNode
[numeric] Maximum number of evaluations per leaf
widthBase
[numeric] Base of width of the estimates of rewards
maximizeFunc
[function] Function to be maximized given parameters scaled from 0 to 1.
funcScale
[numeric] Scale for function to be optimized. If 'maximize = TRUE', 'funcScale = 1', and else 'funcScale = -1'.
optimizeType
[character] Either 'deterministic' for optimizing a deterministic function or 'stochastic' for a stochastic one
nChildrenPerExpansion
[numeric] Number of children per expansion
maxDepth
[numeric] Maximum depth of the tree
withCheck
[logical] Check arguments for 'node', 'layer', and 'tree' class or not
verbose
[logical] Display information
iterationCounter
[numeric] Number of evaluations for the target function done in this tree object
rootNode
[numeric] Root node information ('node' class object)
rootLayer
[numeric] Root layer information ('layer' class object)
layersList
[numeric] List of layers ('layer' class object) in this tree
depths
[numeric] Depths of the layers in this tree
maxUcbValuesSoFar
[numeric] Maximum UCB value for the layers shallower than this layer
evaluateCurrentOptimalNode
[node] Evaluate the optimal node in the current tree
new()
Create a new tree object
tree$new( xMinRoot = NULL, xMaxRoot = NULL, xRepresentativeRoot = NULL, paramLen = NULL, nMaxEvalPerNode, widthBase, maximizeFunc, funcScale, optimizeType, nChildrenPerExpansion, maxDepth, withCheck = FALSE, verbose = TRUE )
xMinRoot
[numeric] Minimum value of the root node (cell) in the tree
xMaxRoot
[numeric] Maximum value of the root node (cell) in the tree
xRepresentativeRoot
[numeric] Representative value of the root node (cell) in the tree
paramLen
[numeric] Number of parameters
nMaxEvalPerNode
[numeric] Maximum number of evaluations per leaf
widthBase
[numeric] Base of width of the estimates of rewards
maximizeFunc
[function] Function to be maximized given parameters scaled from 0 to 1.
funcScale
[numeric] Scale for function to be optimized. If 'maximize = TRUE', 'funcScale = 1', and else 'funcScale = -1'.
optimizeType
[character] Either 'deterministic' for optimizing a deterministic function or 'stochastic' for a stochastic one
nChildrenPerExpansion
[numeric] Number of children per expansion
maxDepth
[numeric] Maximum depth of the tree
withCheck
[logical] Check arguments for 'node', 'layer', and 'tree' class or not
verbose
[logical] Display information
performOneUpdate()
Update the tree information once
tree$performOneUpdate()
print()
Display information about the object
tree$print()
clone()
The objects of this class are cloneable with this method.
tree$clone(deep = FALSE)
deep
Whether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.