R/LDbernoulli.R

Defines functions LDbernoulli .ldRecodeOptionsBernoulli .ldBernoulliParsSupportMoments .ldFormulaBernoulliPMF .ldFormulaBernoulliCDF .ldFormulaBernoulliQF .ldFillBernoulliEstimatesTable .ldBernoulliMethodMLEStructureResults

#
# Copyright (C) 2019 University of Amsterdam
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#

LDbernoulli <- function(jaspResults, dataset, options, state=NULL){
  options <- .ldRecodeOptionsBernoulli(options)
  
  #### Show bernoulli section ----
  .ldIntroText(jaspResults, options, "bernoulli distribution")
  .ldBernoulliParsSupportMoments(jaspResults, options)
  
  pmfContainer <- .ldGetPlotContainer(jaspResults, options, "plotPMF", "Probability Mass Function", 3)
  .ldFillPMFContainer(pmfContainer, options, .ldFormulaBernoulliPMF)
  
  cmfContainer <- .ldGetPlotContainer(jaspResults, options, "plotCMF", "Cumulative Distribution Function", 4)
  .ldFillCMFContainer(cmfContainer, options, .ldFormulaBernoulliCDF)
  
  
  #### Generate and Display data section ----
  # simulate and read data
  .simulateData(jaspResults, options, as="nominal")
  
  ready <- options[['variable']] != ""
  errors <- FALSE
  if(ready && is.null(dataset)){
    dataset <- .readDataSetToEnd(columns.as.factor = options[['variable']])
    #dataset[[options[['variable']]]] <- as.factor(dataset[[options[['variable']]]])
    
    variable <- dataset[[.v(options[['variable']])]]
    variable <- variable[!is.na(variable)]
    errors <- .hasErrors(dataset, type = c("observations", "factorLevels"),
                         observations.amount = "<2",
                         factorLevels.amount = "!=2",
                         exitAnalysisIfErrors = FALSE)
  }
  
  # overview of the data
  dataContainer <- .ldGetDataContainer(jaspResults, options, errors)
  
  readyDesc <- ready && isFALSE(errors)
  .ldSummaryFactorTableMain    (dataContainer, variable, options, readyDesc)
  .ldPlotHistogram             (dataContainer, variable, options, readyDesc, "factor")
  
  
  #### Fit data and assess fit ----
  
  readyFit <- ready && isFALSE(errors)
  #### Maximum Likelihood ----
  if(options$methodMLE){
    mleContainer <- .ldGetFitContainer(jaspResults, options, "mleContainer", "Maximum likelihood", 7, errors)
    
    # parameter estimates
    mleEstimatesTable  <- .ldEstimatesTable(mleContainer, options, TRUE, TRUE, "methodMLE")
    mleResults   <- .ldMLEResults(mleContainer, as.numeric(variable) - 1, options, readyFit, options$distNameInR,
                                  .ldBernoulliMethodMLEStructureResults)
    .ldFillBernoulliEstimatesTable(mleEstimatesTable, mleResults, options, readyFit, levels(variable))
    
    # fit assessment
    mleFitContainer    <- .ldGetFitContainer(mleContainer, options, "mleFitAssessment", "Fit Assessment", 8)

    # fit plots
    .ldFitPlots(mleFitContainer, mleResults$fitdist$estimate, options, as.numeric(variable)-1, readyFit)
    
  }
  
  #### Method of moments ----
  
  #### Unbiased estimate ----
  
  return()
}

### options ----
.ldRecodeOptionsBernoulli <- function(options){
  
  options[['parValNames']] <- c("prob")
  
  options[['pars']]   <- list(prob = options[['prob']])
  options[['fix.pars']] <- list(size = 1)
    
  options[['pdfFun']] <- function(x, size = 1, prob, log = FALSE){ 
    dbinom(x = x, size = size, prob = prob, log = log) 
    }
  options[['cdfFun']] <- function(q, size = 1, prob, lower.tail = TRUE, log.p = FALSE){ 
    pbinom(q = q, size = size, prob = prob, lower.tail = lower.tail, log.p = log.p)
    }
  options[['qFun']]   <- function(p, size = 1, prob, lower.tail = TRUE, log.p = FALSE){ 
    pbinom(p = p, size = size, prob = prob, lower.tail = lower.tail, log.p = log.p)
  }
  options[['rFun']]   <- function(n, size = 1, prob) { rbinom(n = n, size = 1, prob = prob)}
  options[['distNameInR']] <- "binom"
  
  options[['range_x']] <- c(0, 1)
  
  options[['highlightmin']] <- 0
  options[['highlightmax']] <- 1
 
  options$support <- list(min = 0, max = 1)
  options$lowerBound <- c(0)
  options$upperBound <- c(1)
  
  options
}

### text fill functions -----
.ldBernoulliParsSupportMoments <- function(jaspResults, options){
  if(options$parsSupportMoments && is.null(jaspResults[['parsSupportMoments']])){
    pars <- list()
    pars[[1]] <- gettext("probability of success: p \u2208 \u211D: 0 \u2264 p \u2264 1")
    
    support <- gettext("x \u2208 \u2124: 0 \u2264 x \u2264 1")
    
    moments <- list()
    moments$expectation <- gettext("p")
    moments$variance <- gettext("p(1-p)")
    
    jaspResults[['parsSupportMoments']] <- .ldParsSupportMoments(pars, support, moments)
  }
}

.ldFormulaBernoulliPMF <- function(options){
    text <- "<MATH>
    f(x; <span style='color:red'>p</span>) = 
    </MATH>"
  
  return(gsub(pattern = "\n", replacement = " ", x = text))
}

.ldFormulaBernoulliCDF <- function(options){
  text <- "<MATH>
    F(x; <span style='color:red'>p</span>) = 
    </MATH>"
  
  return(gsub(pattern = "\n", replacement = " ", x = text))
}

.ldFormulaBernoulliQF <- function(options){
  text <- "<MATH>
    Q(x; <span style='color:red'>p</span>) = 
    </MATH>"
  
  return(gsub(pattern = "\n", replacement = " ", x = text))
}

#### Table functions ----

.ldFillBernoulliEstimatesTable <- function(table, results, options, ready, levels){
  if(!ready) return()
  if(is.null(results)) return()
  if(is.null(table)) return()
  
  res <- results$structured
  res$parName <- sprintf("p (%s)", levels)
  
  if(results$fitdist$convergence != 0){
    table$addFootnote(gettext("The optimization did not converge, try adjusting the parameter values."), symbol = gettext("<i>Warning.</i>"))
  }
  if(!is.null(results$fitdist$optim.message)){
    table$addFootnote(results$fitdist$message, symbol = gettext("<i>Warning.</i>"))
  }
  
  table$setData(res)
  
  return()
}

.ldBernoulliMethodMLEStructureResults <- function(fit, options){
  if(is.null(fit)) return()
  
  transformations <- c(prob0 = "1-prob", prob1 = "prob")
  
  res <- sapply(transformations, function(tr) car::deltaMethod(fit$estimate, tr, fit$vcov, level = options$ciIntervalInterval))
  rownames(res) <- c("estimate", "se", "lower", "upper")
  res <- t(res)
  res <- cbind(par = rownames(res), res)
  res <- as.data.frame(res)
  
  return(res)
}
Kucharssim/JASP-LearnStats documentation built on Jan. 23, 2020, 3:47 a.m.