#
# Copyright (C) 2019 University of Amsterdam
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
LDf <- function(jaspResults, dataset, options, state=NULL){
options <- .ldRecodeOptionsF(options)
#### Show f section ----
.ldIntroText(jaspResults, options, "F-distribution")
.ldFParsSupportMoments(jaspResults, options)
pdfContainer <- .ldGetPlotContainer(jaspResults, options, "plotPDF", "Probability Density Function", 3)
.ldFillPDFContainer(pdfContainer, options, .ldFormulaFPDF)
cdfContainer <- .ldGetPlotContainer(jaspResults, options, "plotCDF", "Cumulative Distribution Function", 4)
.ldFillCDFContainer(cdfContainer, options, .ldFormulaFCDF)
qfContainer <- .ldGetPlotContainer(jaspResults, options, "plotQF", "Quantile Function", 5)
.ldFillQFContainer(qfContainer, options, .ldFormulaFQF)
#### Generate and Display data section ----
# simulate and read data
.simulateData(jaspResults, options)
ready <- options[['variable']] != ""
errors <- FALSE
if(ready && is.null(dataset)){
dataset <- .readDataSetToEnd(columns.as.numeric = options[['variable']])
variable <- dataset[[.v(options[['variable']])]]
variable <- variable[!is.na(variable)]
errors <- .hasErrors(dataset, type = c("observations", "variance", "infinity", "limits"),
observations.amount = "<2",
limits.min = options$support$min, limits.max = options$support$max,
exitAnalysisIfErrors = FALSE)
}
# overview of the data
dataContainer <- .ldGetDataContainer(jaspResults, options, errors)
readyDesc <- ready && (isFALSE(errors) || (is.null(errors$infinity) && is.null(errors$observations)))
.ldSummaryContinuousTableMain(dataContainer, variable, options, readyDesc)
.ldObservedMomentsTableMain (dataContainer, variable, options, readyDesc)
.ldPlotHistogram (dataContainer, variable, options, readyDesc)
.ldPlotECDF (dataContainer, variable, options, readyDesc)
#### Fit data and assess fit ----
readyFit <- ready && isFALSE(errors)
#### Maximum Likelihood ----
if(options$methodMLE){
mleContainer <- .ldGetFitContainer(jaspResults, options, "mleContainer", "Maximum likelihood", 7, errors)
# parameter estimates
mleEstimatesTable <- .ldEstimatesTable(mleContainer, options, TRUE, TRUE, "methodMLE")
mleResults <- .ldMLEResults(mleContainer, variable, options, readyFit, options$distNameInR,
.ldFMethodMLEStructureResults)
.ldFillFEstimatesTable(mleEstimatesTable, mleResults, options, readyFit)
# fit assessment
mleFitContainer <- .ldGetFitContainer(mleContainer, options, "mleFitAssessment", "Fit Assessment", 8)
# fit statistics
mleFitStatistics <- .ldFitStatisticsTable(mleFitContainer, options, "methodMLE")
mleFitStatisticsResults <- .ldFitStatisticsResults(mleContainer, mleResults$fitdist, variable, options, readyFit)
.ldFillFitStatisticsTable(mleFitStatistics, mleFitStatisticsResults, options, readyFit)
# fit plots
.ldFitPlots(mleFitContainer, mleResults$fitdist$estimate, options, variable, readyFit)
}
#### Method of moments ----
#### Unbiased estimate ----
return()
}
### options ----
.ldRecodeOptionsF <- function(options){
options[['parValNames']] <- c("df1", "df2", "ncp")
options[['pars']] <- list(df1 = options[['df1']], df2 = options[['df2']], ncp = options[['ncp']])
options[['pdfFun']] <- df
options[['cdfFun']] <- pf
options[['qFun']] <- qf
options[['rFun']] <- rf
options[['distNameInR']] <- "f"
options[['range_x']] <- c(options[['min_x']], options[['max_x']])
if(options[['highlightType']] == "minmax"){
options[['highlightmin']] <- options[['min']]
options[['highlightmax']] <- options[['max']]
} else if(options[['highlightType']] == "lower"){
options[['highlightmin']] <- options[['range_x']][1]
options[['highlightmax']] <- options[['lower_max']]
} else if(options[['highlightType']] == "upper"){
options[['highlightmin']] <- options[['upper_min']]
options[['highlightmax']] <- options[['range_x']][2]
} else{
options[['highlightmin']] <- options[['highlightmax']] <- NULL
}
options$support <- list(min = 0, max = Inf)
options$lowerBound <- c(0, 0, -Inf)
options$upperBound <- c(Inf, Inf, Inf)
options
}
### text fill functions -----
.ldFParsSupportMoments <- function(jaspResults, options){
if(options$parsSupportMoments && is.null(jaspResults[['parsSupportMoments']])){
pars <- list()
pars[[1]] <- gettext("degree of freedom: df 1 \u2208 \u211D<sup>+</sup>")
pars[[2]] <- gettext("degree of freedom: df 2 \u2208 \u211D<sup>+</sup>")
pars[[3]] <- gettext("non-centrality: ncp \u2208 \u211D")
support <- gettext("x \u2208 \u211D<sup>+</sup>")
jaspResults[['parsSupportMoments']] <- .ldParsSupportMoments(pars, support, NA)
}
}
.ldFormulaFPDF <- function(options){
text <- "<MATH>
f(x; <span style='color:red'>df 1</span>,
<span style='color:green'>df 2</span>,
<span style='color:blue'>ncp</span>)
</MATH>"
return(gsub(pattern = "\n", replacement = " ", x = text))
}
.ldFormulaFCDF <- function(options){
text <- "<MATH>
F(x; <span style='color:red'>df 1</span>,
<span style='color:green'>df 2</span>,
<span style='color:blue'>ncp</span>)
</MATH>"
return(gsub(pattern = "\n", replacement = " ", x = text))
}
.ldFormulaFQF <- function(options){
text <- "<MATH>
Q(p; <span style='color:red'>df 1</span>,
<span style='color:green'>df 2</span>,
<span style='color:blue'>ncp</span>)
</MATH>"
return(gsub(pattern = "\n", replacement = " ", x = text))
}
#### Table functions ----
.ldFillFEstimatesTable <- function(table, results, options, ready){
if(!ready) return()
if(is.null(results)) return()
if(is.null(table)) return()
par1 <- c(mu = "\u03BC")
par2 <- c(sigma2 = "\u03C3\u00B2", sigma = "\u03C3",
tau2 = "\u03C4\u00B2", tau = "\u03C4")[options$parametrization]
res <- results$structured
res <- res[res$par %in% names(c(par1, par2)),]
res$parName <- c(par1, par2)
if(results$fitdist$convergence != 0){
table$addFootnote(gettext("The optimization did not converge, try adjusting the parameter values."), symbol = gettext("<i>Warning.</i>"))
}
if(!is.null(results$fitdist$optim.message)){
table$addFootnote(results$fitdist$message, symbol = gettext("<i>Warning.</i>"))
}
table$setData(res)
return()
}
.ldFMethodMLEStructureResults <- function(fit, options){
if(is.null(fit)) return()
transformations <- c(mu = "mean", sigma2 = "sd^2", sigma = "sd", tau2 = "1/sd^2", tau = "1/sd")
res <- sapply(transformations, function(tr) car::deltaMethod(fit$estimate, tr, fit$vcov, level = options$ciIntervalInterval))
rownames(res) <- c("estimate", "se", "lower", "upper")
res <- t(res)
res <- cbind(par = rownames(res), res)
res <- as.data.frame(res)
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.