# library(testthat); library(BiocNeighbors); source("setup.R"); source("test-queryKNN.R")
set.seed(999999)
test_that("queryKNN works with basic options", {
Y <- matrix(rnorm(10000), ncol=20)
Z <- matrix(rnorm(2000), ncol=20)
out <- queryKNN(Y, Z, k=8)
ref <- refQueryKNN(Y, Z, k=8)
expect_equal(out, ref)
out <- queryKNN(Y, Z, k=8, BNPARAM=KmknnParam(distance="Manhattan"))
ref <- refQueryKNN(Y, Z, k=8, type="manhattan")
expect_equal(out, ref)
out <- queryKNN(Y, Z, k=8, BNPARAM=KmknnParam(distance="Cosine"))
Y1 <- Y/sqrt(rowSums(Y^2))
Z1 <- Z/sqrt(rowSums(Z^2))
ref <- queryKNN(Y1, Z1, k=8)
expect_equal(out, ref)
})
test_that("queryKNN works in parallel", {
Y <- matrix(rnorm(10000), ncol=20)
Z <- matrix(rnorm(2000), ncol=20)
out <- queryKNN(Y, Z, k=8)
pout <- queryKNN(Y, Z, k=8, num.threads=2)
expect_equal(out, pout)
pout <- queryKNN(Y, Z, k=8, BPPARAM=BiocParallel::SnowParam(2))
expect_equal(out, pout)
})
test_that("queryKNN works with subsets", {
Y <- matrix(rnorm(10000), ncol=20)
Z <- matrix(rnorm(2000), ncol=20)
out <- queryKNN(Y, Z, k=8)
sout <- queryKNN(Y, Z, subset=1:10, k=8)
out$index <- out$index[1:10,]
out$distance <- out$distance[1:10,]
expect_equal(out, sout)
expect_warning(out <- queryKNN(Y[0,,drop=FALSE], Z, k=8), "capped")
expect_identical(dim(out$index), c(nrow(Z), 0L))
expect_identical(dim(out$distance), c(nrow(Z), 0L))
})
test_that("queryKNN works with variable k", {
Y <- matrix(rnorm(10000), ncol=20)
Z <- matrix(rnorm(2000), ncol=20)
k <- rep(c(4, 10), length.out=nrow(Z))
out <- queryKNN(Y, Z, k=k)
keep <- k == 4
ref <- queryKNN(Y, Z, k=4)
expect_identical(do.call(rbind, out$index[keep]), ref$index[keep,])
expect_identical(do.call(rbind, out$distance[keep]), ref$distance[keep,])
keep <- k == 10
ref <- queryKNN(Y, Z, k=10)
expect_identical(do.call(rbind, out$index[keep]), ref$index[keep,])
expect_identical(do.call(rbind, out$distance[keep]), ref$distance[keep,])
# The AsIs forced variable works.
out <- queryKNN(Y, Z, k=I(10), subset=1)
ref <- queryKNN(Y, Z, k=10, subset=1)
expect_identical(out$index[[1]], ref$index[1,])
expect_identical(out$distance[[1]], ref$distance[1,])
})
test_that("queryKNN works with prebuilt indices", {
Y <- matrix(rnorm(10000), ncol=20)
Z <- matrix(rnorm(2000), ncol=20)
built <- buildIndex(Y, k=8)
out <- queryKNN(Y, Z, k=8)
preout <- queryKNN(built, Z, k=8)
expect_identical(out, preout)
# Unaffected by BNPARAM settings at this point.
preout <- queryKNN(built, Z, k=8, BNPARAM=AnnoyParam())
expect_identical(out, preout)
# Throws an error for deserialized prebuilt indices.
tmp <- tempfile(fileext=".rds")
saveRDS(built, tmp)
expect_error(queryKNN(readRDS(tmp), Z, k=1), "null pointer")
})
test_that("queryKNN works when inputs are transposed", {
Y <- matrix(rnorm(10000), ncol=20)
Z <- matrix(rnorm(2000), ncol=20)
out <- queryKNN(Y, Z, k=8)
tout <- queryKNN(t(Y), t(Z), k=8, transposed=TRUE)
expect_identical(out, tout)
})
test_that("queryKNN works with variable outputs", {
Y <- matrix(rnorm(10000), ncol=20)
Z <- matrix(rnorm(2000), ncol=20)
out <- queryKNN(Y, Z, k=8)
iout <- queryKNN(Y, Z, k=8, get.distance=FALSE)
expect_null(iout$distance)
expect_identical(iout$index, out$index)
dout <- queryKNN(Y, Z, k=8, get.index=FALSE)
expect_null(dout$index)
expect_identical(dout$distance, out$distance)
tout <- queryKNN(Y, Z, k=8, get.index="transposed", get.distance="transposed")
expect_identical(t(tout$distance), out$distance)
expect_identical(t(tout$index), out$index)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.