Description Usage Arguments Value References Examples
Build a LASSO classifier using internal cross validation to choose the turning parameter, with a 5-fold cross validation as default.
1 | lasso.intcv(kfold = 5, X, y, seed, alp = 1)
|
kfold |
number of folds. By default, |
X |
dataset to be trained. This dataset must have rows as probes and columns as samples. |
y |
a vector of sample group of each sample for the dataset to be trained.
It must have an equal length to the number of samples in |
seed |
an integer used to initialize a pseudorandom number generator. |
alp |
alpha, the penalty type. It can be any numeric value from 0 to 1.
By default, |
a list of 4 elements:
mc |
an internal misclassification error rate |
time |
the processing time of performing internal validation with LASSO |
model |
a LASSO classifier, resulted from |
cfs |
estimated coefficients for the final classifier |
Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization Paths for Generalized Linear Mod- els via Coordinate Descent, http://www.stanford.edu/~hastie/Papers/glmnet.pdf Journal of Statistical Software, Vol. 33(1), 1-22 Feb 2010
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | set.seed(101)
biological.effect <- estimate.biological.effect(uhdata = uhdata.pl)
ctrl.genes <- unique(rownames(uhdata.pl))[grep("NC", unique(rownames(uhdata.pl)))]
biological.effect.nc <- biological.effect[!rownames(biological.effect)
%in% ctrl.genes, ]
group.id <- substr(colnames(biological.effect.nc), 7, 7)
biological.effect.train.ind <- colnames(biological.effect.nc)[c(sample(which(
group.id == "E"), size = 64),
sample(which(group.id == "V"), size = 64))]
biological.effect.nc.tr <- biological.effect.nc[, biological.effect.train.ind]
lasso.int <- lasso.intcv(X = biological.effect.nc.tr,
y = substr(colnames(biological.effect.nc.tr), 7, 7),
kfold = 5, seed = 1, alp = 1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.