quant.norm: Quantile normalization

Description Usage Arguments Value References Examples

Description

Normalize training dataset with quantile normalization and store the quantiles from the training dataset as the references to frozen quantile normalize test dataset.

Usage

1
quant.norm(train = NULL, test = NULL, ref.dis = NULL)

Arguments

train

training dataset to be quantile normalized. The dataset must have rows as probes and columns as samples. This can be left unspecified if ref.dis is suppied for frozen normalize test set.

test

test dataset to be frozen quantile normalized. The dataset must have rows as probes and columns as samples. The number of rows must equal to the number of rows in the training set. By default, the test set is not specified (test = NULL) and no frozen normalization will be performed.

ref.dis

reference distribution for frozen quantile normalize test set against previously normalized training set. This is required when train is not supplied. By default, ref.dis = NULL.

Value

a list of two datasets and one reference distribution:

train.mn

the normalized training set

test.fmn

the frozen normalized test set, if test set is specified

ref.dis

the reference distribution

References

Bolstad, B. M., Irizarry R. A., Astrand, M, and Speed, T. P. (2003) A Comparison of Normalization Methods for High Density Oligonucleotide Array Data Based on Bias and Variance. Bioinformatics 19(2) , pp 185-193. http://bmbolstad.com/misc/normalize/normalize.html

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
set.seed(101)
group.id <- substr(colnames(nuhdata.pl), 7, 7)
train.ind <- colnames(nuhdata.pl)[c(sample(which(group.id == "E"), size = 64),
                               sample(which(group.id == "V"), size = 64))]
train.dat <- nuhdata.pl[, train.ind]
test.dat <- nuhdata.pl[, !colnames(nuhdata.pl) %in% train.ind]

# normalize only training set
data.qn <- quant.norm(train = train.dat)
str(data.qn)

# normalize training set and frozen normalize test set
data.qn <- quant.norm(train = train.dat, test = test.dat)
str(data.qn)

# frozen normalize test set with reference distribution
ref <- quant.norm(train = train.dat)$ref.dis
data.qn <- quant.norm(test = test.dat, ref.dis = ref)
str(data.qn)

LXQin/precision documentation built on May 11, 2019, 6:24 p.m.