Description Usage Arguments Value Examples
Create simulated dataset through "virtual rehybridization" for a given array-to-sample assignment.
1 2 3 4 |
biological.effect |
the estimated biological effect dataset. The dataset must have rows as probes and columns as samples. |
handling.effect |
the estimated handling effect dataset. The dataset must have rows as probes and columns as samples. It must have the same dimensions and the same probe names as the estimated biological effect dataset. |
group.id |
a vector of sample-group labels for each sample of the estimated biological effect dataset. It must be a 2-level non-numeric factor vector. |
group.id.level |
a vector of sample-group label level. It must have two and only two elements and
the first element is the reference.
By default, |
array.to.sample.assign |
a vector of indices that assign arrays to samples (see details in |
icombat |
an indicator for combat adjustment. By default, |
isva |
an indicator for sva adjustment. By default, |
iruv |
an indicator for RUV-4 adjustment. By default, |
biological.effect.ctrl |
the negative-control probe biological effect data if |
handling.effect.ctrl |
the negative-control probe handling effect data if |
simulated data, after batch adjustment if specified
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | ## Not run:
biological.effect <- estimate.biological.effect(uhdata = uhdata.pl)
handling.effect <- estimate.handling.effect(uhdata = uhdata.pl,
nuhdata = nuhdata.pl)
ctrl.genes <- unique(rownames(uhdata.pl))[grep("NC", unique(rownames(uhdata.pl)))]
biological.effect.nc <- biological.effect[!rownames(biological.effect) %in% ctrl.genes, ]
handling.effect.nc <- handling.effect[!rownames(handling.effect) %in% ctrl.genes, ]
assign.ind <- confounding.design(seed = 1, num.array = 192,
degree = "complete", rev.order = FALSE)
group.id <- substr(colnames(biological.effect.nc), 7, 7)
# no batch effect adjustment (default)
sim.data.raw <- rehybridize(biological.effect = biological.effect.nc,
handling.effect = handling.effect.nc,
group.id = group.id,
array.to.sample.assign = assign.ind)
# batch effect adjusting with sva
sim.data.sva <- rehybridize(biological.effect = biological.effect.nc,
handling.effect = handling.effect.nc,
group.id = group.id,
array.to.sample.assign = assign.ind,
isva = TRUE)
# batch effect adjusting with RUV-4
biological.effect.ctrl <- biological.effect[rownames(biological.effect) %in% ctrl.genes, ]
handling.effect.ctrl <- handling.effect[rownames(handling.effect) %in% ctrl.genes, ]
sim.data.ruv <- rehybridize(biological.effect = biological.effect.nc,
handling.effect = handling.effect.nc,
group.id = group.id,
array.to.sample.assign = assign.ind,
iruv = TRUE,
biological.effect.ctrl = biological.effect.ctrl,
handling.effect.ctrl = handling.effect.ctrl)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.