pam.predict: Prediction with nearest shrunken centroid classifier

Description Usage Arguments Value References Examples

Description

Predict from a nearest shrunken centroid fit.

Usage

1
pam.predict(pam.intcv.model, pred.obj, pred.obj.group.id)

Arguments

pam.intcv.model

a PAM classifier built with pam.intcv.

pred.obj

dataset to have its sample group predicted. The dataset must have rows as probes and columns as samples. It must have an equal number of probes as the dataset being trained.

pred.obj.group.id

a vector of sample-group labels for each sample of the dataset to be predicted. It must have an equal length to the number of samples as pred.obj.

Value

a list of 3 elements:

pred

predicted sample group for each sample

mc

a predicted misclassification error rate (external validation)

prob

predicted probability for each sample

References

T. Hastie, R. Tibshirani, Balasubramanian Narasimhan and Gil Chu (2014). pamr: Pam: prediction analysis for microarrays. R package version 1.55. https://CRAN.R-project.org/package=pamr

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
set.seed(101)
biological.effect <- estimate.biological.effect(uhdata = uhdata.pl)
ctrl.genes <- unique(rownames(uhdata.pl))[grep("NC", unique(rownames(uhdata.pl)))]
biological.effect.nc <- biological.effect[!rownames(biological.effect) %in% ctrl.genes, ]
group.id <- substr(colnames(biological.effect.nc), 7, 7)

biological.effect.train.ind <- colnames(biological.effect.nc)[c(sample(which(group.id == "E"), size = 64),
                                          sample(which(group.id == "V"), size = 64))]
biological.effect.test.ind <- colnames(biological.effect.nc)[!colnames(biological.effect.nc) %in% biological.effect.train.ind]

biological.effect.nc.tr <- biological.effect.nc[, biological.effect.train.ind]
biological.effect.nc.te <- biological.effect.nc[, biological.effect.test.ind]

pam.int <- pam.intcv(X = biological.effect.nc.tr,
                     y = substr(colnames(biological.effect.nc.tr), 7, 7),
                     kfold = 5, seed = 1)

pam.pred <- pam.predict(pam.intcv.model = pam.int,
                        pred.obj = biological.effect.nc.te,
                        pred.obj.group.id = substr(colnames(biological.effect.nc.te), 7, 7))
pam.int$mc
pam.pred$mc

LXQin/precision documentation built on May 11, 2019, 6:24 p.m.