Description Usage Arguments Value References Examples
Predict from a nearest shrunken centroid fit.
1 | pam.predict(pam.intcv.model, pred.obj, pred.obj.group.id)
|
pam.intcv.model |
a PAM classifier built with |
pred.obj |
dataset to have its sample group predicted. The dataset must have rows as probes and columns as samples. It must have an equal number of probes as the dataset being trained. |
pred.obj.group.id |
a vector of sample-group labels for
each sample of the dataset to be predicted.
It must have an equal length to the number of samples as |
a list of 3 elements:
pred |
predicted sample group for each sample |
mc |
a predicted misclassification error rate (external validation) |
prob |
predicted probability for each sample |
T. Hastie, R. Tibshirani, Balasubramanian Narasimhan and Gil Chu (2014). pamr: Pam: prediction analysis for microarrays. R package version 1.55. https://CRAN.R-project.org/package=pamr
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | set.seed(101)
biological.effect <- estimate.biological.effect(uhdata = uhdata.pl)
ctrl.genes <- unique(rownames(uhdata.pl))[grep("NC", unique(rownames(uhdata.pl)))]
biological.effect.nc <- biological.effect[!rownames(biological.effect) %in% ctrl.genes, ]
group.id <- substr(colnames(biological.effect.nc), 7, 7)
biological.effect.train.ind <- colnames(biological.effect.nc)[c(sample(which(group.id == "E"), size = 64),
sample(which(group.id == "V"), size = 64))]
biological.effect.test.ind <- colnames(biological.effect.nc)[!colnames(biological.effect.nc) %in% biological.effect.train.ind]
biological.effect.nc.tr <- biological.effect.nc[, biological.effect.train.ind]
biological.effect.nc.te <- biological.effect.nc[, biological.effect.test.ind]
pam.int <- pam.intcv(X = biological.effect.nc.tr,
y = substr(colnames(biological.effect.nc.tr), 7, 7),
kfold = 5, seed = 1)
pam.pred <- pam.predict(pam.intcv.model = pam.int,
pred.obj = biological.effect.nc.te,
pred.obj.group.id = substr(colnames(biological.effect.nc.te), 7, 7))
pam.int$mc
pam.pred$mc
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.