#' @export
moltModelPlot = function(MoltModel, dx = 1:5000, lens = c(50,70,90,110,130,150,170,190),graphic="R",wd=8,ht=8,...){
p = list()
p$ddoy = dx
p$moltModel = MoltModel
if(graphic=="R")x11()
if(graphic=='png')png(file.path(project.datadirectory('bio.lobster'),'figures','MoltProbModel.png'),width=wd,height=ht,units='in',res=200)
plot(range(dx),0:1,type='n',xlab='Degree Days',ylab="Molt Probability",...)
cols = brewer.pal(length(lens)+1,"YlOrRd")[-1]
for(i in 1:length(lens)){
py2 = pPrMolt(p,cl=lens[i])
lines(p$ddoy,py2,col=cols[i])
}
legend('bottomright',legend=lens,title="Carapace Length \n (mm)",col=cols,pch=15,bty='n')
grid()
if(graphic!="R")dev.off()
lens=seq(52.5,200,5)
m.Incr=posterior_predict(MoltModel$maleMoltIncrModel,newdata=data.frame(CL=lens),fun=exp)
m.mu = apply(m.Incr,2,mean)
m.ub = apply(m.Incr,2,quantile,0.975)
m.lb = apply(m.Incr,2,quantile,0.025)
f.Incr=posterior_predict(MoltModel$femaleMoltIncrModel,newdata=data.frame(CL=lens),fun=exp)
f.mu = apply(f.Incr,2,mean)
f.ub = apply(f.Incr,2,quantile,0.975)
f.lb = apply(f.Incr,2,quantile,0.025)
#lens = seq(50,200,5)
#P = predict(moltIncrModel,newdata=data.frame(CL=lens),type='response',se.fit=T)
#
if(graphic=="R")x11()
if(graphic=='png')png(file.path(project.datadirectory('bio.lobster'),'figures','MoltIncrModel.png'),width=wd,height=ht,units='in',res=200)
with(MoltModel$malemoltincr.data,plot(CL,SizeDiff,type='n',xlim=c(50,200),xlab="Carapace Length (mm)",ylab = "Size Difference (mm)"))
#females
with(MoltModel$femalemoltincr.data,points(CL,SizeDiff,pch=16,col=rgb(1,0,0,0.2)))
lines(lens,f.mu,col='red',lwd=2)
lines(lens,f.ub,col='red',lty=2)
lines(lens,f.lb,col='red',lty=2)
# males
with(MoltModel$malemoltincr.data,points(CL,SizeDiff,pch=16,col=rgb(0,0,1,0.2)))
lines(lens,m.mu,col='blue',lwd=2)
lines(lens,m.ub,col='blue',lty=2)
lines(lens,m.lb,col='blue',lty=2)
if(graphic!="R")dev.off()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.