#'heu
#'
#'Heuristically improved algorithm for fitting parameters of psychometric function. Version of algorithm with fixed gamma parameter. Gamma has to be specifed.
#'
#'@param data Specifies the data set on which the function will be fitted. Data have to be formated in specified way - data.frame/tibble (yes, no, predictor columns).
#'@param gamma sets the loves boundary of function
#'@param sigmoid determines the outer shape of the fuction
#'@param core dermines scalling of predictor
#'@param ... specifies the parametres of optim function
#'
#'@return vector of return values
#'@export
#'
heu_fixed_gamma <- function(data, sigmoid, core, gamma=0.05,par=NULL, fn=NULL, gr=NULL, ...,
method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),
lower = -Inf, upper = Inf,
control = list(), hessian = FALSE){
model <- NULL
if(gamma < 0 || gamma > 1) {stop("Gamma must be in interval [0,1).")}
coref <- get(paste(core, ".orig.cdf", sep=""))
corei_x <- get(paste(core, ".inverse_x.cdf", sep=""))
sigmoidf <- get(paste(sigmoid, ".orig.cdf",sep=""))
sigmoidi <- get(paste(sigmoid, ".inverse.cdf",sep=""))
if(is.null(fn)){ default_fn=TRUE
fn <- fn_def_fixed_gamma
}else{default_fn=FALSE} #if fn is not specified the most-likelihood function is used
if(is.null(par)){
##inner parameter adjusting
primPar <- primalParamsDef(sigmoidi, corei_x, data)
par=c(primPar)
l_up <- sigmoidi(1-.Machine$double.neg.eps)
l_low <- sigmoidi(min(0.95, max(data$yes/(data$yes+data$no))))
} #TODO
fit <- NULL
if(default_fn){
fitUpper <- tryCatch({stats::optim(par=c(l_up,par), fn=fn, gr=gr, gamma, max(data$predictor), min(data$predictor), sigmoidf, sigmoidi, coref, corei_x, data, method=method, lower=lower, upper=upper, control=control)})
fitLower <-tryCatch({stats::optim(par=c(l_low,par), fn=fn, gr=gr, gamma, max(data$predictor),min(data$predictor), sigmoidf, sigmoidi, coref, corei_x, data, method=method, lower=lower, upper=upper, control=control)})
#primal guards
guard_u <- max(corei_x(sigmoidi(0.5), fitUpper$par[-c(1)]),corei_x(sigmoidi(0.5), fitLower$par[-1]))
guard_l <- min(corei_x(sigmoidi(0.5), fitUpper$par[-c(1)]),corei_x(sigmoidi(0.5), fitLower$par[-1]))
## if results of primal fitting are different fitting will continue
value_old <- max(fitUpper$value, fitLower$value)
value_new <- min(fitUpper$value, fitLower$value)
while (value_old > value_new) {
fitUpper_old <- fitUpper
fitLower_old <- fitLower
value_old <- value_new
parUp <- c(l_up,fitLower_old$par[-c(1)])
parLow <- c(l_low,fitUpper_old$par[-c(1)])
fitUpper <- tryCatch({stats::optim(par=parUp, fn=fn, gr=gr, gamma, guard_u, guard_l, sigmoidf, sigmoidi, coref, corei_x, data, method=method, lower=lower, upper=upper, control=control)})
fitLower <- tryCatch({stats::optim(par=parLow, fn=fn, gr=gr, gamma, guard_u, guard_l, sigmoidf, sigmoidi, coref, corei_x, data, method=method, lower=lower, upper=upper, control=control)})
guard_u_new <- max(corei_x(sigmoidi(0.5), fitUpper$par[-1]),corei_x(sigmoidi(0.5), fitLower$par[-1]))
guard_l_new <- min(corei_x(sigmoidi(0.5), fitUpper$par[-1]),corei_x(sigmoidi(0.5), fitLower$par[-1]))
guard_u <- max(guard_u_new, guard_u)
guard_l <- max(guard_l_new, guard_l)
value_new <- min(fitUpper$value, fitLower$value)
}
if(fitUpper_old$value < fitLower_old$value){ fit <- fitUpper}
else{fit <- fitLower }
}else{
#TODO
par=c(sigmoidi(1-la), primPar)
fit <- tryCatch({stats::optim(par=par, fn=fn, gr=gr, gamma, ..., method=method, lower=lower, upper=upper, control=control)})
}
if(!is.list(fit)){return(fit)}
model <- append(fit, list(sigmoid=sigmoid, core=core, gamma=gamma, lambda=(1-sigmoidf(fit$par[1])), params=c(fit$par[-c(1)])))
model$par <- NULL
class(model) <- c("PF",class(model))
model$startMidpoint <- corei_x(sigmoidi(0.5), primPar)
return(model)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.