# The MIT License (MIT)
# Copyright (c) 2018 Louise AC Millard, MRC Integrative Epidemiology Unit, University of Bristol
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction, including without
# limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so, subject to the following
# conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or substantial portions
# of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
# TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
# CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
# preprocessing for three specific CGM data formats from: Medtronic ipro2, Dexcom G2, and Abbott Freestyle Libre
convertFileFormat <- function(filename, rs) {
print("converting file format ...")
inFile = paste0(rs@indir, '/', filename)
outFile = paste0(rs@outdir, '/', filename)
if (rs@device == 0) {
convertFileMedtronic(inFile, outFile, filename)
}
else if (rs@device == 1) {
convertFileDexcom(inFile, outFile, filename)
}
else if (rs@device == 2) {
convertFileAbbotFreestyleLibre(inFile, outFile, filename)
}
else if (rs@device == 3) {
## already in correct format
file.copy(inFile,outFile)
}
}
convertFileMedtronic <- function(inFile, outFile, filename) {
# read lines using correct encoding
lines = readLines(inFile, encoding="utf-16", skipNul = TRUE)
# remove header lines and quotes
lines = lines[12:length(lines)]
lines = gsub("\"", "", lines)
## convert lines to data frame
data = read.table(text = lines, sep='\t', quote="", header=1)
## convert to consistent format
# time, sgReading, meal, exercise, medication, bgReading
## timestamp - date and time
data = checkAndRename('Timestamp', '', 'time', data)
## Sensor glucose
# glucose column name might contain mmol/L or mg/dL so we get it this way
sensGlucColName = colnames(data)[which(grepl('^Sensor.Glucose', colnames(data)))]
data = checkAndRename(sensGlucColName, '', 'sgReading', data)
## blood glucose reading (from finger prick) needed to calibrate this device
# glucose column name might contain mmol/L or mg/dL so we get it this way
bloodGlucColName = colnames(data)[which(grepl('^BG.Reading', colnames(data)))]
data = checkAndRename(bloodGlucColName, '', 'bgReading', data)
## excluded rows
colName = "Excluded"
idxExcluded = which(names(data) == colName)
if (length(idxExcluded)>0) {
# if excluded column exists then remove all excluded rows
ix = which(data[,idxExcluded]!="TRUE")
data = data[ix,]
}
####
#### Optional columns (might not have any data)
colName = 'Meal'
ixmeal = which(colnames(data) == colName)
if (length(ixmeal)==1) {
colnames(data)[ixmeal] = 'meal'
#stop(paste("Column missing from input file:", colName), call.=FALSE)
} else {
colName = "Meal.Size"
ixmeal = which(names(data) == colName)
if (length(ixmeal)>0) {
names(data)[ixmeal]="meal"
}
else {
print("No meal column found in Medtronic data")
}
}
colName = 'Exercise'
ixex = which(colnames(data) == colName)
if (length(ixex)==1) {
colnames(data)[ixex] = 'exercise'
} else {
colName = "Exercise.Level"
ixex = which(names(data) == colName)
if (length(ixex)>0) {
names(data)[ixex]="exercise"
}
else {
print("No exercise column found in Medtronic data")
}
}
## medication
data = checkAndRename('Medication', '', 'medication', data)
####
#### extract columns we need
cols = c('time', 'sgReading', 'bgReading', 'exercise', 'medication', 'meal')
data = data[,cols]
write.table(data, outFile, row.names=FALSE, sep=',', quote=FALSE)
}
convertFileDexcom <- function(inFile, outFile, filename) {
# read lines using correct encoding
lines = readLines(inFile, encoding="utf-16", skipNul = TRUE)
## convert lines to data frame
data = read.table(text = lines, sep=',', quote="", header=1)
# glucose column name might contain mmol/L or mg/dL so we get it this way
glucColName = colnames(data)[which(grepl('^Glucose.Value', colnames(data)))]
# convert CGM values to numeric, needed because sometimes it contains text values e.g. 'Low'
# Note this can produce a 'NAs introduced by coercion' warning message but that's OK, the non-numeric text values are converted to NAs
data[,glucColName] = as.numeric(as.character(data[,glucColName]))
## remove rows with no timestamp
ix = which(is.na(data$Timestamp..YYYY.MM.DDThh.mm.ss.) | data$Timestamp..YYYY.MM.DDThh.mm.ss.=="" | is.na(data[,glucColName]))
if (length(ix)>0) {
data = data[-ix,]
}
## timestamp - date and time
data = checkAndRename('Timestamp..YYYY.MM.DDThh.mm.ss.', '', 'time', data)
## change time to consistent format
timeFormat = '%Y-%m-%dT%H:%M:%S'
data$time = strptime(data$time, format=timeFormat)
data$time = format(data$time, '%d/%m/%y %H:%M:%S')
## Sensor glucose
data = checkAndRename(glucColName, '', 'sgReading', data)
####
#### extract columns we need
cols = c('time', 'sgReading')
data = data[,cols]
write.table(data, outFile, row.names=FALSE, sep=',', quote=FALSE)
}
convertFileAbbotFreestyleLibre <- function(inFile, outFile, filename) {
# read lines using correct encoding
lines = readLines(inFile, encoding="utf-16", skipNul = TRUE)
# remove header lines and quotes
lines = lines[3:length(lines)]
lines = gsub("\"", "", lines)
## convert lines to data frame
data = read.table(text = lines, sep='\t', quote="", header=1)
# keep only zero record type - the SG values every 15 minutes and event rows (i.e. exclude the scan glucose values)
ix = which(data$Record.Type != 1)
data = data[ix,]
## timestamp - date and time
data = checkAndRename('Time', 'Device.Timestamp', 'time', data)
## change time to consistent format
timeFormat = '%Y/%m/%d %H:%M'
data$time = strptime(data$time, format=timeFormat)
data$time = format(data$time, '%d/%m/%y %H:%M:%S')
## Sensor glucose
# glucose column name might contain mmol/L or mg/dL so we get it this way
sensGlucColName = colnames(data)[which(grepl('^Historic.Glucose', colnames(data)))]
data = checkAndRename(sensGlucColName, '', 'sgReading', data)
## blood glucose reading (from finger prick)
# glucose column name might contain mmol/L or mg/dL so we get it this way
bloodGlucColName = colnames(data)[which(grepl('^Strip.Glucose', colnames(data)))]
data = checkAndRename(bloodGlucColName, '', 'bgReading', data)
## meals
data = checkAndRename('Non.numeric.Food','', 'meal', data)
####
#### extract columns we need
cols = c('time', 'sgReading', 'bgReading', 'meal')
data = data[,cols]
write.table(data, outFile, row.names=FALSE, sep=',', quote=FALSE)
}
# checks column exists and renames it
checkAndRename <- function(oldname, oldname2, newname, data) {
ixT = which(colnames(data) == oldname)
if (length(ixT)==0) {
ixT2 = which(colnames(data) == oldname2)
if (length(ixT2)==0) {
stop(paste("Column missing from input file:", oldname, oldname2), call.=FALSE)
}
colnames(data)[ixT2] = newname
}
else {
colnames(data)[ixT] = newname
}
return(data)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.