HDGC_VAR_all: Granger Causality Network in High Dimensional mixed...

View source: R/HDGC_VAR_all.R

HDGC_VAR_allR Documentation

Granger Causality Network in High Dimensional mixed Integrated and Cointegrated VARs

Description

Wrapper around HDGC_VAR_multiple which tests Granger causality from each variable to all other variables, one by one. Can therefore be used to construct a network.

Usage

HDGC_VAR_all(
  data,
  p = 1,
  d = 0,
  bound = 0.5 * nrow(data),
  parallel = FALSE,
  n_cores = NULL
)

Arguments

data

the data matrix or object that can be coerced to a matrix.

p

lag length of VAR

d

order of lag augmentation corresponding to suspected max order of integration

bound

lower bound on tuning parameter lambda

parallel

TRUE for parallel computing

n_cores

nr of cores to use in parallel computing, default is all but one

Value

Granger causality matrix and Lasso selections are printed to the console

References

Hecq, A., Margaritella, L., Smeekes, S., "Inference in Non Stationary High Dimensional VARs" (2020, check the latest version at https://sites.google.com/view/luca-margaritella )

Hecq, A., Margaritella, L., Smeekes, S., "Granger Causality Testing in High-Dimensional VARs: a Post-Double-Selection Procedure." arXiv preprint arXiv:1902.10991 (2019).

Examples

## Not run: HDGC_VAR_all(data=sample_dataset_I1, p=2, d=2, parallel=TRUE )

Marga8/HDGCvar documentation built on May 25, 2024, 11:12 a.m.