View source: R/HDGC_VAR_multiple_pairs.R
HDGC_VAR_multiple_pairs | R Documentation |
A wrapper around HDGC_VAR_multiple
. If GCpairs is used,
the function is the same as HDGC_VAR_multiple
. Alternatively, if a we want to test all combinations between
variables in GCto and GCfrom, these can be given directly. See Example.
HDGC_VAR_multiple_pairs(
data,
GCpairs = NULL,
GCto = NULL,
GCfrom = NULL,
p = 1,
d = 0,
bound = 0.5 * nrow(data),
parallel = FALSE,
n_cores = NULL
)
data |
the data matrix or object that can be coerced to a matrix. |
GCpairs |
it should contain a nested list. The outer list is all the pairs to be considered. See |
GCto |
all combination variables Granger caused |
GCfrom |
all combination variables Granger causing |
p |
lag length of the VAR |
d |
order of lag augmentation corresponding to suspected max order of integration |
bound |
lower bound on tuning parameter lambda |
parallel |
TRUE for parallel computing |
n_cores |
nr of cores to use in parallel computing, default is all but one |
Granger causality matrix and Lasso selections are printed to the console
Hecq, A., Margaritella, L., Smeekes, S., "Inference in Non Stationary High Dimensional VARs" (2020, check the latest version at https://sites.google.com/view/luca-margaritella )
Hecq, A., Margaritella, L., Smeekes, S., "Granger Causality Testing in High-Dimensional VARs: a Post-Double-Selection Procedure." arXiv preprint arXiv:1902.10991 (2019).
## Not run: GCto = list(c("Var 1", "Var 2")); GCfrom = list(c("Var 3", "Var 4", "Var 5"))
## Not run: HDGC_VAR_multiple_pairs(sample_dataset_I1,GCto,GCfrom,p=2,d=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.