Plot_GC_all | R Documentation |
Plot High-Dimensional Granger causality Networks
Plot_GC_all(
Comb,
Stat_type = "FS_cor",
alpha = 0.01,
multip_corr = list(F, "bonferroni", gamm = c(1e-04, 0.1, 0.001), fdr.apf = c(0.05,
0.6), verb = F),
...,
cluster = list(F, 10, "black", 0.51, 1, 0)
)
Comb |
output from: |
Stat_type |
either FS_cor (default), Asymp or Asymp_Robust respectively for F-stat small sample correction, standard Chi square test, standard chi square test with heteroscedasticity correction |
alpha |
the desired probability of type one error, default is 0.01. |
multip_corr |
A list: first element is logical, if TRUE a multiple testing correction using |
... |
all parameters for the network plot: see example and |
cluster |
A list: first element is logical, if TRUE a cluster plot using |
a graph_from_adjacency_matrix
network
Hecq, A., Margaritella, L., Smeekes, S., "Inference in Non Stationary High Dimensional VARs" (2020, check the latest version at https://sites.google.com/view/luca-margaritella )
Hecq, A., Margaritella, L., Smeekes, S., "Granger Causality Testing in High-Dimensional VARs: a Post-Double-Selection Procedure." arXiv preprint arXiv:1902.10991 (2019).
Newman, Mark EJ, and Michelle Girvan. "Finding and evaluating community structure in networks." Physical review E 69.2 (2004): 026113.
Quatto, Piero, et al. "Brain networks construction using Bayes FDR and average power function." Statistical Methods in Medical Research 29.3 (2020): 866-878.
## Not run: Plot_GC_all(Comb, "FS_cor",alpha=0.01,multip_corr=list(F), directed=T, layout.circle
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.