View source: R/HDGC_VAR_multiple_pairs_I0.R
HDGC_VAR_multiple_pairs_I0 | R Documentation |
A wrapper around HDGC_VAR_multiple_I0
. If GCpairs is used, the function is the same as HDGC_VAR_multiple_I0
.
Alternatively, if we want to test all combinations between variables in GCto and GCfrom, these can be given directly. See Example.
HDGC_VAR_multiple_pairs_I0(
data,
GCpairs = NULL,
GCto = NULL,
GCfrom = NULL,
p = 1,
bound = 0.5 * nrow(data),
parallel = FALSE,
n_cores = NULL
)
data |
the data matrix or object that can be coerced to a matrix. |
GCpairs |
it should contain a nested list. The outer list is all the pairs to be considered. See |
GCto |
all combination variables Granger caused |
GCfrom |
all combination variables Granger causing |
p |
lag length of the VAR |
bound |
lower bound on tuning parameter lambda |
parallel |
TRUE for parallel computing |
n_cores |
nr of cores to use in parallel computing, default is all but one |
Granger causality matrix and Lasso selections are printed to the console
Hecq, A., Margaritella, L., Smeekes, S., "Granger Causality Testing in High-Dimensional VARs: a Post-Double-Selection Procedure." arXiv preprint arXiv:1902.10991 (2019).
## Not run: GCto = list(c("Var 1", "Var 2")); GCfrom = list(c("Var 3", "Var 4", "Var 5"))
## Not run: HDGC_VAR_multiple_pairs_I0(sample_dataset_I0,GCto,GCfrom,p=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.