HDGC_VAR_all_I0: Granger Causality Network in High Dimensional Stationary VARs

View source: R/HDGC_VAR_all_I0.R

HDGC_VAR_all_I0R Documentation

Granger Causality Network in High Dimensional Stationary VARs

Description

Wrapper around HDGC_VAR_multiple_I0 which tests Granger causality from each variable to all other variables, one by one. Can therefore be used to construct a network.

Usage

HDGC_VAR_all_I0(
  data,
  p = 1,
  bound = 0.5 * nrow(data),
  parallel = FALSE,
  n_cores = NULL
)

Arguments

data

the data matrix or object that can be coerced to a matrix.

p

lag length of VAR

bound

lower bound on tuning parameter lambda

parallel

TRUE for parallel computing

n_cores

nr of cores to use in parallel computing, default is all but one

Value

Granger causality matrix and Lasso selections are printed to the console

References

Hecq, A., Margaritella, L., Smeekes, S., "Granger Causality Testing in High-Dimensional VARs: a Post-Double-Selection Procedure." arXiv preprint arXiv:1902.10991 (2019).

Examples

## Not run: HDGC_VAR_all_I0(data=sample_dataset_I0,p=2,parallel=T)

Marga8/HDGCvar documentation built on May 25, 2024, 11:12 a.m.