#' Compute the score
#'
#' \code{score_direct} computes the objective score approximately if the \code{c_2}-function and the \code{n_2}-function
#' are approximated via a set of splines.
#'
#' Note that nodes, c2 and n2 have to be of the same length.
#' The score is given as the expected sample size of the design under the alternative hypothesis.
#' The integrals are approximated via the trapezial rule.
#'
#'
#' @param parameters Parameters (alpha, power, standardized effect) whith which you want to build your design
#' @param cf Boundary for stopping for futility after the first stage
#' @param ce Boundary for stopping for efficacy after the first stage
#' @param nodes Nodes for the stage two functions
#' @param c2 c_2-values that correspond to \code{nodes}
#' @param n1 First stage sample size
#' @param n2 n_2-values that correspond to \code{nodes}
#'
#' @export
score_direct <- function(parameters, cf, ce, nodes, c2, n1, n2){
g <- splinefun(nodes, n2)
N=12
h = (ce - cf) / N
x = seq(cf, ce, h)
alpha = c(1, rep(2,(N-1)), 1)
# w = c(x, alpha)
sc <- function(w){
y <- w[2] * g(w[1]) * dnorm( w[1] - sqrt(n1) * parameters$mu)
}
y <- apply(cbind(x,alpha), 1, sc)
p <- (h/2) * sum(y)
p <- p + n1
return(p)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.