#' newfunctionfromabove
#'
#' @param y value
#' @param n sample size
#' @param iter iterations
#'
#' @return Central Limit Theorem for Uniform Random Sample
#' @export
#'
#' @examples
mycltu=function(n,iter,a=0,b=10){
## r-random sample from the uniform
y=runif(n*iter,a,b)
## Place these numbers into a matrix
## The columns will correspond to the iteration and the rows will equal the sample size n
data=matrix(y,nr=n,nc=iter,byrow=TRUE)
## apply the function mean to the columns (2) of the matrix
## these are placed in a vector w
w=apply(data,2,mean)
## We will make a histogram of the values in w
## How high should we make y axis?
## All the values used to make a histogram are placed in param (nothing is plotted yet)
param=hist(w,plot=FALSE)
## Since the histogram will be a density plot we will find the max density
ymax=max(param$density)
## To be on the safe side we will add 10% more to this
ymax=1.1*ymax
## Now we can make the histogram
hist(w,freq=FALSE, ylim=c(0,ymax), main=paste("Histogram of sample mean",
"\n", "sample size= ",n,sep=""),xlab="Sample mean")
## add a density curve made from the sample distribution
lines(density(w),col="Blue",lwd=3) # add a density plot
## Add a theoretical normal curve
curve(dnorm(x,mean=(a+b)/2,sd=(b-a)/(sqrt(12*n))),add=TRUE,col="Red",lty=2,lwd=3) # add a theoretical curve
## Add the density from which the samples were taken
curve(dunif(x,a,b),add=TRUE,lwd=4)
}
mycltu(n=20,iter=100000)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.