## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## -----------------------------------------------------------------------------
# load package: SLIP
library(SLIP)
set.seed(1234)
## -----------------------------------------------------------------------------
N = 90
p = 200
data = SLIP.scp.generator(N, p, dist = "t", param = 5)
## -----------------------------------------------------------------------------
alpha = 0.2
# SLIP-thresh-C
sig.thrsh.c = SLIP.thresh.c(data$dat, alpha)$sig
# SLIP-thresh-D
sig.thrsh.d = SLIP.thresh.d(data$dat, alpha)$sig
# SLIP-lasso
sig.lasso = SLIP.lasso(data$dat, alpha)$sig
# SLIP-indep
sig.indep = SLIP.indep(data$dat, alpha)$sig
# BH-simul
ECDF = bootstrap.cusum(N)
sig.simul = BH.simul(data$dat, alpha, ECDF)$sig
# BH-asymp
sig.asymp = BH.asymp(data$dat, alpha)$sig
## -----------------------------------------------------------------------------
# false discovery proportion (FDP) and true discovery proportion (TDP)
sigList = list(sig.thrsh.c, sig.thrsh.d, sig.lasso, sig.indep, sig.simul, sig.asymp)
FDP = sapply(sigList, function(sig){ length(setdiff(sig, data$index))/max(1, length(sig)) })
TDP = sapply(sigList, function(sig){ length(intersect(sig, data$index))/length(data$index) })
Proceudre = c("SLIP.thresh.c", "SLIP.thresh.d", "SLIP.lasso", "SLIP.indep", "BH.simul", "BH.asymp")
res = data.frame(Proceudre, FDP = round(FDP, 4), TDP = round(TDP, 4))
knitr::kable(t(res))
## -----------------------------------------------------------------------------
library(SLIP)
data = fmri.data
(dimA = c(data$dimx, data$dimy, data$dimz))
# load the ROI data used in the paper
(dim(data$dat))
dat = apply(data$dat[-c(1:5, 356:360), ], 2, function(X){ colMeans(matrix(X, nrow = 10)) })
(dim(dat))
## -----------------------------------------------------------------------------
alpha = 0.2
sigInfo = SLIP.thresh.d(dat, alpha, estMthd = "POET", outputW = TRUE, outputCP = TRUE)
# The threshold L
(sigInfo$L)
# The discovery set
(names(sigInfo$sig))
# The estimated FDP
(sigInfo$estFDP)
# The estimated change-point location (ratio)
(sigInfo$cps)
# The W-statistics
(sigInfo$W)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.