require(RcppShapeDTW)
require(farff)
require(Rcpp)
require(lubridate)
require(dplyr)
require(tidyr)
require(rje)
require(tibble)
require(stringr)
source("R/BenchmarkSeriesFunctions.R")
source("R/ClassDefinitions.R")
SDP_standard <- new("ShapeDescriptorParams")
SDP_shape <- new("ShapeDescriptorParams",
Type = "compound",
Descriptors = c("slopeDescriptor", "PAADescriptor"),
Additional_params = list(Weights = c(1, 10), PAAWindow = 3L, slopeWindow = 3L))
### Testing LIBRAS data set ###
files_paths_train_libras <- paste0("Data/BenchmarkSeries/MultivariateTS/Multivariate_arff/Libras/",
list.files(path = "Data/BenchmarkSeries/MultivariateTS/Multivariate_arff/Libras/",
pattern = "[0-9]{,1}_TRAIN"))
files_paths_test_libras <- paste0("Data/BenchmarkSeries/MultivariateTS/Multivariate_arff/Libras/",
list.files(path = "Data/BenchmarkSeries/MultivariateTS/Multivariate_arff/Libras/",
pattern = "[0-9]{,1}_TEST"))
train_series_libras <- load_benchmark_series_MD_dataset(filesPaths = files_paths_train_libras)
test_series_libras <- load_benchmark_series_MD_dataset(filesPaths = files_paths_test_libras)
test_whole_set_libras <- buildParametersSetBenchmarkSeries(benchmarkTS = test_series_libras,
testSet = train_series_libras,
shapeDTWParams = c(SDP_standard, SDP_shape))
libras_classification_results <- purrr::map(test_whole_set_libras, .f = function(args_set){
do.call(what = benchSeriesSelfClassParallel_general,
args = c(args_set, switchToSequential = F))
})
future::plan(future::sequential)
libras_accuracy_results <- purrr::map(.x = libras_classification_results, .f = function(cres){
sum(cres$ClassInd == cres$classificationResults) / nrow(cres)
})
libras_accuracy_table <- parseAccuracyResToTableBenchmark(libras_accuracy_results)
write.csv2(libras_accuracy_table, file = "Data/Results/libras_accuracy_res_v2.csv")
### Testing ERing data set ###
files_paths_train_ering <- paste0("Data/BenchmarkSeries/MultivariateTS/Multivariate_arff/ERing/",
list.files(path = "Data/BenchmarkSeries/MultivariateTS/Multivariate_arff/ERing/",
pattern = "[0-9]{,1}_TRAIN"))
files_paths_test_ering <- paste0("Data/BenchmarkSeries/MultivariateTS/Multivariate_arff/ERing/",
list.files(path = "Data/BenchmarkSeries/MultivariateTS/Multivariate_arff/ERing/",
pattern = "[0-9]{,1}_TEST"))
train_series_ering <- load_benchmark_series_MD_dataset(filesPaths = files_paths_train_ering)
test_series_ering <- load_benchmark_series_MD_dataset(filesPaths = files_paths_test_ering)
test_whole_set_ering <- buildParametersSetBenchmarkSeries(benchmarkTS = test_series_ering,
testSet = train_series_ering,
shapeDTWParams = c(SDP_standard, SDP_shape))
ering_classification_results <- purrr::map(test_whole_set_ering, .f = function(args_set){
do.call(what = benchSeriesSelfClassParallel_general,
args = c(args_set, switchToSequential = F))
})
future::plan(future::sequential)
ering_accuracy_results <- purrr::map(.x = ering_classification_results, .f = function(cres){
sum(cres$ClassInd == cres$classificationResults) / nrow(cres)
})
ering_accuracy_table <- parseAccuracyResToTableBenchmark(ering_accuracy_results)
write.csv2(ering_accuracy_table, file = "Data/Results/ering_accuracy_res_v2.csv")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.