library(httr)
library(lubridate)
library(equityData)
library(xts)
library(data.table)
library(leanr)
library(QuantTools)
library(equityData)
library(AzureStor)
# get data from azure
ENDPOINT = storage_endpoint(Sys.getenv("BLOB-ENDPOINT"), key=Sys.getenv("BLOB-KEY"))
CONT = storage_container(ENDPOINT, "equity-usa-hour-fmpcloud-adjusted")
CONTMIN = storage_container(ENDPOINT, "equity-usa-minute-fmpcloud")
fmpcloudr::fmpc_set_token(Sys.getenv("APIKEY-FMPCLOUD"))
# parameters
pra_length <- 8 * 22 * 8
frequency_in_minutes <- "hour" # hour minute 5 mins
# get NY current time
get_ny_time <- function() {
s <- Sys.time()
s <- .POSIXct(s, "America/New_York")
return(s)
}
# UPDATE RAW EXUBER DATA --------------------------------------------------
# import data
azure_blobs <- list_blobs(CONT)
market_data_list <- lapply(azure_blobs$name, function(x) {
print(x)
y <- tryCatch(storage_read_csv2(CONT, x), error = function(e) NA)
if (is.null(y) | all(is.na(y))) return(NULL)
y <- cbind(symbol = x, y)
return(y)
})
market_data <- rbindlist(market_data_list)
market_data[, symbol := toupper(gsub("\\.csv", "", symbol))]
market_data[, returns := close / shift(close) - 1]
market_data <- na.omit(market_data)
market_data$datetime <- as.POSIXct(as.numeric(market_data$datetime),
origin=as.POSIXct("1970-01-01", tz="EST"),
tz="EST")
market_data <- market_data[, .(symbol, datetime, close, returns)]
market_data <- unique(market_data, by = c("symbol", "datetime"))
keep_symbols <- market_data[, .N, by = symbol][N > pra_length + 1, symbol]
market_data_sample <- market_data[symbol %in% keep_symbols]
market_data_sample <- market_data_sample[, tail(.SD, pra_length + 1), by = .(symbol)]
symbols <- unique(market_data_sample$symbol)
close_data <- market_data_sample[, .(symbol, datetime, close)]
# import and prepare market data for which we will calculate exuber aggregate indicator
# print("Import sp500 market data")
# sp500_stocks <- GET("https://financialmodelingprep.com/api/v3/sp500_constituent?apikey=15cd5d0adf4bc6805a724b4417bbaafc")
# sp500_stocks <- rbindlist(httr::content(sp500_stocks))
# market_data <- import_lean("D:/market_data/equity/usa/hour/trades", sp500_stocks$symbol)
# setorderv(market_data, c('symbol', 'datetime'))
# keep_symbols <- market_data[, .N, by = symbol][N > pra_length + 1, symbol]
# market_data_sample <- market_data[symbol %in% keep_symbols]
# market_data_sample <- market_data_sample[, tail(.SD, pra_length + 1), by = .(symbol)]
# symbols <- unique(market_data_sample$symbol)
# close_data <- market_data_sample[, .(symbol, datetime, close)]
# adjust for splits and dividends
factor_files_paths <- list.files("D:/factor_files", full.names = TRUE)
factor_files <- lapply(factor_files_paths, fread)
names(factor_files) <- gsub(".*/|.csv", "", factor_files_paths)
factor_files <- rbindlist(factor_files, idcol = TRUE)
setnames(factor_files, colnames(factor_files), c("symbol", "date", "price_factor", "split_factor", "previous_price"))
factor_files[, symbol := toupper(symbol)]
factor_files[, date := as.Date(as.character(date), "%Y%m%d")]
# get current data
get_current_data <- function(close_dt, time = "hour") {
# set start and end dates
ticker <- close_dt$symbol[1]
start_date <- as.Date(max(close_dt$datetime))
end_date <- start_date + 5
# get market data
ohlcv <- get_market_equities(ticker,
from = as.character(start_date),
to = as.character(end_date),
time = time,
api_key = Sys.getenv("APIKEY-FMPCLOUD"))
if (is.null(ohlcv)) {
print(paste0("There is no data for symbol ", ticker))
return(NULL)
}
ohlcv$symbol <- ticker
ohlcv$formated <- as.POSIXct(ohlcv$formated, tz = "EST")
ohlcv <- ohlcv[, .(symbol, datetime = formated, open = o, high = h, low = l, close = c, volume = v)]
ohlcv <- rbind(close_dt, ohlcv[, .(symbol, datetime, close)])
prices <- unique(ohlcv)
prices <- prices[format(datetime, "%H:%M:%S") %between% c("10:00:00", "15:00:00")]
setorderv(prices, c("symbol", "datetime"))
# add newest data becuase FP cloud can't reproduce newst data that fast
nytime <- format(Sys.time(), tz="America/New_York", usetz=TRUE)
if (time == "hour" && hour(nytime) > hour(max(prices$datetime))) {
last_price <- GET(paste0("https://financialmodelingprep.com/api/v3/quote-short/", ticker, "?apikey=", Sys.getenv("APIKEY-FMPCLOUD")))
last_price <- content(last_price)
if (length(last_price) > 0) {
last_price <- last_price[[1]]$price
prices <- rbind(prices, data.table(symbol = ticker, datetime = as.POSIXct(round.POSIXt(nytime, units = "hours")), close = last_price))
}
}
# adjust
prices[, date:= as.Date(datetime)]
prices <- merge(prices, factor_files, by = c("symbol", "date"), all.x = TRUE, all.y = FALSE)
prices[, `:=`(split_factor = na.locf(split_factor, na.rm = FALSE, rev = TRUE),
price_factor = na.locf(price_factor, na.rm = FALSE, rev = TRUE)), by = symbol]
prices[, `:=`(split_factor = ifelse(is.na(split_factor), 1, split_factor),
price_factor = ifelse(is.na(price_factor), 1, price_factor))]
cols_change <- c("close")
prices[, (cols_change) := lapply(.SD, function(x) {x * price_factor * split_factor}), .SDcols = cols_change]
return(prices)
}
# set closing time
closing_time <- as.POSIXct(paste0(Sys.Date(), "15:00:00"), tz = "America/New_York")
open_time <- as.POSIXct(paste0(Sys.Date(), "08:30:00"), tz = "America/New_York")
# main function which calculates exuber aggregate indicator
s <- get_ny_time()
next_time_point <- ceiling_date(s, frequency_in_minutes)
# main loop
repeat {
# get current time
s <- get_ny_time()
print(s)
#calculate percent rank
if (s >= next_time_point) {
print("Calculate percent rank")
# get current data
close_dt <- close_data[symbol %in% symbols]
current_data <- close_dt[, get_current_data(data.table(symbol, datetime, close)), by = "symbol"]
current_data[, pra := roll_percent_rank(close, pra_length), by = "symbol"]
# calcualte pra indicator
pra_values <- current_data[datetime == max(datetime)]
pra_values <- pra_values[, pra]
pra_values <- ifelse(pra_values < 0.001, 1, 0)
pra_values <- sum(pra_values, na.rm = TRUE)
# send mail notification if main indicator is above threshold (we have to sell)
# if (pra_values > 10) {
# send_email(message = "PRA Value is above Threshold",
# sender = "mislav.sagovac@contentio.biz",
# recipients = c("mislav.sagovac@contentio.biz"))
# }
# save to blob
object <- data.frame(datetime = max(current_data$datetime), pra = pra_values)
save_blob_files(object, file_name = "pra.csv", container = "qc-live")
}
# break loop if exchange is closed
if (s > closing_time) {
print("Market is closed")
break
}
Sys.sleep(1L)
next_time_point <- ceiling_date(s, frequency_in_minutes)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.